Suppr超能文献

原位生成垂直交叉的 P-CuSe 超薄纳米片,源自 CuS 纳米棒阵列,用于高性能超级电容器。

In Situ Generation of Vertically Crossed P-CuSe Ultrathin Nanosheets Derived from CuS Nanorod Arrays for High-Performance Supercapacitors.

机构信息

College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao266071, China.

出版信息

ACS Appl Mater Interfaces. 2023 Feb 15;15(6):8169-8180. doi: 10.1021/acsami.2c21527. Epub 2023 Feb 6.

Abstract

Transition-metal selenides (TMSs) have great potential in the synthesis of supercapacitor electrode materials due to their rich content and high specific capacity. However, the aggregation phenomenon of TMS materials in the process of charging and discharging will cause capacity attenuation, which seriously affects the service life and practical applications. Therefore, it is of great practical significance to design simple and efficient synthesis strategies to overcome these shortcomings. Hence, P-doped CuSe nanosheets are loaded on vertically aligned CuS nanorod arrays to synthesize CF/CuS@CuSe/P nanocomposites with a unique core-shell heterostructure. Notably, the CuS precursors can be rapidly converted into CuSe nanorod arrays in situ in just 30 min at room temperature. The unique core-shell heterostructure effectively avoids the aggregation phenomenon, and the doped P elements further enhance the electrochemical properties of the electrode materials. Therefore, the as-prepared CF/CuS@CuSe/P electrode exhibits a high areal capacitance of 5054 mF cm (1099 C g) at 3 mA cm and still retains 90.2% capacitance after 10 000 galvanostatic charge-discharge (GCD) cycles. The asymmetric supercapacitor (ASC) device assembled from synthetic CF/CuS@CuSe/P and activated carbon (AC) possesses an energy density of 41.1 Wh kg at a power density of 480.4 W kg. This work shows that the designed CF/CuS@CuSe/P electrode has broad application prospects in the field of electrochemical energy storage.

摘要

过渡金属硒化物 (TMSs) 由于其丰富的含量和高比容量,在超级电容器电极材料的合成中具有巨大的潜力。然而,TMS 材料在充放电过程中的聚集现象会导致容量衰减,严重影响其使用寿命和实际应用。因此,设计简单高效的合成策略来克服这些缺点具有重要的实际意义。因此,将 P 掺杂的 CuSe 纳米片负载在垂直排列的 CuS 纳米棒阵列上,以合成具有独特核壳异质结构的 CF/CuS@CuSe/P 纳米复合材料。值得注意的是,CuS 前体可以在室温下仅 30 分钟内快速原位转化为 CuSe 纳米棒阵列。独特的核壳异质结构有效地避免了聚集现象,掺杂的 P 元素进一步增强了电极材料的电化学性能。因此,所制备的 CF/CuS@CuSe/P 电极在 3 mA cm 时表现出 5054 mF cm 的高面积电容(1099 C g),并且在 10000 次恒流充放电 (GCD) 循环后仍保留 90.2%的电容。由合成的 CF/CuS@CuSe/P 和活性炭 (AC) 组装的非对称超级电容器 (ASC) 装置在 480.4 W kg 的功率密度下具有 41.1 Wh kg 的能量密度。这项工作表明,设计的 CF/CuS@CuSe/P 电极在电化学储能领域具有广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验