Liu Zeyu, Lan Youshi, Jia Jianfeng, Geng Yiyun, Dai Xiaobin, Yan Litang, Hu Tongyang, Chen Jing, Matyjaszewski Krzysztof, Ye Gang
Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China.
China Institute of Atomic Energy, Department of Radiochemistry, 102413, Beijing, People's Republic of China.
Nat Commun. 2022 Jul 7;13(1):3918. doi: 10.1038/s41467-022-31360-x.
By integrating multi-scale computational simulation with photo-regulated macromolecular synthesis, this study presents a new paradigm for smart design while customizing polymeric adsorbents for uranium harvesting from seawater. A dissipative particle dynamics (DPD) approach, combined with a molecular dynamics (MD) study, is performed to simulate the conformational dynamics and adsorption process of a model uranium grabber, i.e., PAO-b-PPEGMA, suggesting that the maximum adsorption capacity with atomic economy can be achieved with a preferred block ratio of 0.18. The designed polymers are synthesized using the PET-RAFT polymerization in a microfluidic platform, exhibiting a record high adsorption capacity of uranium (11.4 ± 1.2 mg/g) in real seawater within 28 days. This study offers an integrated perspective to quantitatively assess adsorption phenomena of polymers, bridging metal-ligand interactions at the molecular level with their spatial conformations at the mesoscopic level. The established protocol is generally adaptable for target-oriented development of more advanced polymers for broadened applications.
通过将多尺度计算模拟与光调控大分子合成相结合,本研究提出了一种智能设计的新范式,同时定制用于从海水中提取铀的聚合物吸附剂。采用耗散粒子动力学(DPD)方法并结合分子动力学(MD)研究,对模型铀捕获剂即PAO-b-PPEGMA的构象动力学和吸附过程进行了模拟,结果表明,当嵌段比为0.18时,可实现具有原子经济性的最大吸附容量。所设计的聚合物在微流控平台上通过PET-RAFT聚合反应合成,在28天内对实际海水中的铀表现出创纪录的高吸附容量(11.4±1.2 mg/g)。本研究提供了一个综合视角来定量评估聚合物的吸附现象,在分子水平上弥合金属-配体相互作用与其在介观水平上的空间构象之间的差距。所建立的方案通常适用于面向目标的更先进聚合物的开发,以实现更广泛的应用。