Suppr超能文献

通过计算发现和理解材料。

Discovering and understanding materials through computation.

作者信息

Louie Steven G, Chan Yang-Hao, da Jornada Felipe H, Li Zhenglu, Qiu Diana Y

机构信息

Department of Physics, University of California at Berkeley, Berkeley, CA, USA.

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

出版信息

Nat Mater. 2021 Jun;20(6):728-735. doi: 10.1038/s41563-021-01015-1. Epub 2021 May 27.

Abstract

Materials modelling and design using computational quantum and classical approaches is by now well established as an essential pillar in condensed matter physics, chemistry and materials science research, in addition to experiments and analytical theories. The past few decades have witnessed tremendous advances in methodology development and applications to understand and predict the ground-state, excited-state and dynamical properties of materials, ranging from molecules to nanoscopic/mesoscopic materials to bulk and reduced-dimensional systems. This issue of Nature Materials presents four in-depth Review Articles on the field. This Perspective aims to give a brief overview of the progress, as well as provide some comments on future challenges and opportunities. We envision that increasingly powerful and versatile computational approaches, coupled with new conceptual understandings and the growth of techniques such as machine learning, will play a guiding role in the future search and discovery of materials for science and technology.

摘要

如今,除了实验和分析理论之外,使用计算量子和经典方法进行材料建模与设计,已成为凝聚态物理、化学和材料科学研究的重要支柱。在过去几十年中,从分子到纳米/介观材料,再到块体和低维系统,在理解和预测材料的基态、激发态及动力学性质方面,方法开发和应用取得了巨大进展。本期《自然·材料》发表了四篇关于该领域的深度综述文章。本观点文章旨在简要概述进展情况,并对未来的挑战和机遇提出一些看法。我们设想,功能日益强大且通用的计算方法,再加上新的概念理解以及机器学习等技术的发展,将在未来科技材料的探索和发现中发挥指导作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验