Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building Room 201, BronxBronx, NY, 10461, USA.
Geroscience. 2022 Oct;44(5):2491-2508. doi: 10.1007/s11357-022-00618-z. Epub 2022 Jul 8.
Insulin appears to exert salutary effects in the central nervous system (CNS). Thus, brain insulin resistance has been proposed to play a role in brain aging and dementia but is conceptually complex and unlikely to fit classic definitions established in peripheral tissues. Thus, we sought to characterize brain insulin responsiveness in young (4-5 months) and old (24 months) FBN male rats using a diverse set of assays to determine the extent to which insulin effects in the CNS are impaired with age. When performing hyperinsulinemic-euglycemic clamps in rats, intracerebroventricular (ICV) infusion of insulin in old animals improved peripheral insulin sensitivity by nearly two-fold over old controls and comparable to young rats, suggesting preservation of this insulin-triggered response in aging per se (p < 0.05). We next used an imaging-based approach by comparing ICV vehicle versus insulin and performed resting state functional magnetic resonance imaging (rs-fMRI) to evaluate age- and insulin-related changes in network connectivity within the default mode network. In aging, lower connectivity between the mesial temporal (MT) region and other areas, as well as reduced MT signal complexity, was observed in old rats, which correlated with greater cognitive deficits in old. Despite these stark differences, ICV insulin failed to elicit any significant alteration to the BOLD signal in young rats, while a significant deviation of the BOLD signal was observed in older animals, characterized by augmentation in regions of the septal nucleus and hypothalamus, and reduction in thalamus and nucleus accumbens. In contrast, ex vivo stimulation of hippocampus with 10 nM insulin revealed increased Akt activation in young (p < 0.05), but not old rats. Despite similar circulating levels of insulin and IGF-1, cerebrospinal fluid concentrations of these ligands were reduced with age. Thus, these data highlight the complexity of capturing brain insulin action and demonstrate preserved or heightened brain responses to insulin with age, despite dampened canonical signaling, thereby suggesting impaired CNS input of these ligands may be a feature of reduced brain insulin action, providing further rationale for CNS replacement strategies.
胰岛素似乎对中枢神经系统 (CNS) 发挥有益作用。因此,脑胰岛素抵抗被认为在脑衰老和痴呆中起作用,但概念上较为复杂,不太可能符合外周组织中建立的经典定义。因此,我们试图使用多种检测方法来描述年轻(4-5 个月)和老年(24 个月)FBN 雄性大鼠的大脑胰岛素反应能力,以确定随着年龄的增长,中枢神经系统中胰岛素的作用在多大程度上受损。在对大鼠进行高胰岛素-正常血糖钳夹时,与老年对照组相比,老年动物脑室内(ICV)输注胰岛素可使外周胰岛素敏感性提高近两倍,与年轻大鼠相当,表明衰老本身对这种胰岛素触发反应具有一定的保护作用(p<0.05)。接下来,我们使用基于成像的方法,通过比较 ICV 载体与胰岛素,进行静息状态功能磁共振成像(rs-fMRI),以评估默认模式网络内的年龄和胰岛素相关的网络连接变化。在衰老过程中,与年轻大鼠相比,老年大鼠的内侧颞(MT)区域与其他区域之间的连接性降低,MT 信号复杂性降低,这与老年大鼠认知缺陷更大相关。尽管存在这些明显的差异,但 ICV 胰岛素对年轻大鼠的 BOLD 信号没有引起任何显著变化,而在老年动物中观察到 BOLD 信号的显著偏差,表现为隔核和下丘脑区域的增强,以及丘脑和伏隔核的减少。相比之下,10 nM 胰岛素对海马的离体刺激显示出年轻大鼠 Akt 激活增加(p<0.05),但老年大鼠没有。尽管循环胰岛素和 IGF-1 水平相似,但这些配体的脑脊液浓度随年龄而降低。因此,这些数据突出了捕捉大脑胰岛素作用的复杂性,并证明尽管经典信号减弱,大脑对胰岛素的反应仍然保持或增强,这表明这些配体的中枢神经系统输入受损可能是大脑胰岛素作用降低的特征,为中枢神经系统替代策略提供了进一步的依据。