Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA.
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
Nat Biotechnol. 2022 Dec;40(12):1774-1779. doi: 10.1038/s41587-022-01368-1. Epub 2022 Jul 7.
Human untargeted metabolomics studies annotate only ~10% of molecular features. We introduce reference-data-driven analysis to match metabolomics tandem mass spectrometry (MS/MS) data against metadata-annotated source data as a pseudo-MS/MS reference library. Applying this approach to food source data, we show that it increases MS/MS spectral usage 5.1-fold over conventional structural MS/MS library matches and allows empirical assessment of dietary patterns from untargeted data.
人类非靶向代谢组学研究仅能注释约 10%的分子特征。我们引入参考数据驱动的分析方法,将代谢组学串联质谱 (MS/MS) 数据与元数据注释的源数据进行匹配,作为伪 MS/MS 参考库。将这种方法应用于食物源数据,我们发现它使 MS/MS 光谱的使用比传统的结构 MS/MS 库匹配增加了 5.1 倍,并允许从非靶向数据中进行经验性的饮食模式评估。