Suppr超能文献

多巴胺反应的逐渐时间转移反映了机器学习中时间差分误差的进展。

A gradual temporal shift of dopamine responses mirrors the progression of temporal difference error in machine learning.

机构信息

Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA.

Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.

出版信息

Nat Neurosci. 2022 Aug;25(8):1082-1092. doi: 10.1038/s41593-022-01109-2. Epub 2022 Jul 7.

Abstract

A large body of evidence has indicated that the phasic responses of midbrain dopamine neurons show a remarkable similarity to a type of teaching signal (temporal difference (TD) error) used in machine learning. However, previous studies failed to observe a key prediction of this algorithm: that when an agent associates a cue and a reward that are separated in time, the timing of dopamine signals should gradually move backward in time from the time of the reward to the time of the cue over multiple trials. Here we demonstrate that such a gradual shift occurs both at the level of dopaminergic cellular activity and dopamine release in the ventral striatum in mice. Our results establish a long-sought link between dopaminergic activity and the TD learning algorithm, providing fundamental insights into how the brain associates cues and rewards that are separated in time.

摘要

大量证据表明,中脑多巴胺神经元的相位反应与机器学习中使用的一种教学信号(时间差分 (TD) 误差)非常相似。然而,之前的研究未能观察到该算法的一个关键预测:当一个代理将提示和奖励关联起来,而奖励和提示在时间上是分开的,那么多巴胺信号的时间应该在多个试验中从奖励时间逐渐向后移动到提示时间。在这里,我们证明了这种逐渐的转变既发生在小鼠腹侧纹状体的多巴胺能细胞活动水平上,也发生在多巴胺释放水平上。我们的结果在多巴胺能活动和 TD 学习算法之间建立了长期以来寻求的联系,为大脑如何将时间上分开的提示和奖励联系起来提供了基本的见解。

相似文献

引用本文的文献

6
Interpretable deep learning for deconvolutional analysis of neural signals.用于神经信号反卷积分析的可解释深度学习
Neuron. 2025 Apr 16;113(8):1151-1168.e13. doi: 10.1016/j.neuron.2025.02.006. Epub 2025 Mar 12.

本文引用的文献

2
A Unified Framework for Dopamine Signals across Timescales.多巴胺信号的跨时间尺度统一框架。
Cell. 2020 Dec 10;183(6):1600-1616.e25. doi: 10.1016/j.cell.2020.11.013. Epub 2020 Nov 27.
4
Deep Reinforcement Learning and Its Neuroscientific Implications.深度强化学习及其神经科学意义。
Neuron. 2020 Aug 19;107(4):603-616. doi: 10.1016/j.neuron.2020.06.014. Epub 2020 Jul 13.
5
A systems-neuroscience model of phasic dopamine.相位多巴胺的系统神经科学模型。
Psychol Rev. 2020 Nov;127(6):972-1021. doi: 10.1037/rev0000199. Epub 2020 Jun 11.
6
Cue-Evoked Dopamine Promotes Conditioned Responding during Learning.线索诱发的多巴胺促进学习过程中的条件反应。
Neuron. 2020 Apr 8;106(1):142-153.e7. doi: 10.1016/j.neuron.2020.01.012. Epub 2020 Feb 5.
8
A distributional code for value in dopamine-based reinforcement learning.多巴胺基强化学习中的价值分布代码。
Nature. 2020 Jan;577(7792):671-675. doi: 10.1038/s41586-019-1924-6. Epub 2020 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验