Suppr超能文献

电子鼻同质数据集在牛肉质量分类和微生物种群预测中的应用。

Electronic nose homogeneous data sets for beef quality classification and microbial population prediction.

机构信息

School of Applied Science, Telkom University, Jalan Telekomunikasi Terusan Buah Batu, Bandung, West Java, Indonesia.

Department of Informatics, Faculty of Intelligent Electrical and Informatics Technology, Institut Teknologi Sepuluh Nopember (ITS) Sukolilo, Surabaya, Indonesia.

出版信息

BMC Res Notes. 2022 Jul 7;15(1):237. doi: 10.1186/s13104-022-06126-9.

Abstract

OBJECTIVES

In recent years, research on the use of electronic noses (e-nose) has developed rapidly, especially in the medical and food fields. Typically, e-nose is coupled with machine learning algorithms to detect or predict multiple sensory classes in a given sample. In many cases, comprehensive and complete experiments are required to ensure the generalizability of the predictive model. For this reason, homogeneous data sets are important to use. Homogeneous data sets refer to the data sets obtained from different observations in almost similar environmental condition. In this data article, e-nose homogeneous data sets are provided for beef quality classification and microbial population prediction.

DATA DESCRIPTION

This data set is originated from 12 type of beef cuts. The process of beef spoilage is recorded using 11 Metal-Oxide Semiconductor (MOS) gas sensors for 2220 min. The formal standards, issued by the Meat Standards Committee, are used as a reference in labeling beef quality. Based on the number of microbial populations, meat quality was grouped into four classes, namely excellent, good, acceptable, and spoiled. The data set is formatted in "xlsx" file. Each sheet represents one beef cut. Moreover, data sets are good cases for feature selection algorithm stability test, especially to solve sensor array optimization problems.

摘要

目的

近年来,电子鼻(e-nose)的研究发展迅速,特别是在医学和食品领域。通常,e-nose 与机器学习算法相结合,用于检测或预测给定样本中的多个感官类别。在许多情况下,需要进行全面和完整的实验,以确保预测模型的泛化能力。为此,同质数据集是很重要的。同质数据集是指从几乎相似环境条件下的不同观测中获得的数据集合。在这个数据文章中,提供了用于牛肉质量分类和微生物种群预测的 e-nose 同质数据集。

数据描述

该数据集来源于 12 种牛肉切块。使用 11 个金属氧化物半导体(MOS)气体传感器对牛肉变质过程进行了 2220 分钟的记录。肉类标准委员会发布的正式标准被用作牛肉质量标签的参考。基于微生物种群数量,将肉质分为四个等级,即优秀、良好、可接受和变质。数据集采用“xlsx”文件格式。每个工作表代表一个牛肉切块。此外,该数据集非常适合特征选择算法稳定性测试,特别是用于解决传感器阵列优化问题。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验