Suppr超能文献

基于金属氧化物半导体传感器的电子鼻作为红肉变质分类的替代技术

Electronic Nose Based on Metal Oxide Semiconductor Sensors as an Alternative Technique for the Spoilage Classification of Red Meat.

作者信息

El Barbri Noureddine, Llobet Eduard, El Bari Nezha, Correig Xavier, Bouchikhi Benachir

机构信息

Sensor Electronic  Instrumentation Group, Faculty of Sciences, Physics Department, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes, Morocco.

MINOS, Microsystems and Nanotechnologies for Chemical Analysis, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain.

出版信息

Sensors (Basel). 2008 Jan 21;8(1):142-156. doi: 10.3390/s8010142.

Abstract

The aim of the present study was to develop an electronic nose for the quality control of red meat. Electronic nose and bacteriological measurements are performed to analyse samples of beef and sheep meat stored at 4°C for up to 15 days. Principal component analysis (PCA) and support vector machine (SVM) based classification techniques are used to investigate the performance of the electronic nose system in the spoilage classification of red meats. The bacteriological method was selected as the reference method to consistently train the electronic nose system. The SVM models built classified meat samples based on the total microbial population into "unspoiled" (microbial counts < 6 log10 cfu/g) and "spoiled" (microbial counts ≥ 6 log10 cfu/g). The preliminary results obtained by the bacteria total viable counts (TVC) show that the shelf-life of beef and sheep meats stored at 4 °C are 7 and 5 days, respectively. The electronic nose system coupled to SVM could discriminate between unspoiled/ spoiled beef or sheep meats with a success rate of 98.81 or 96.43 %, respectively. To investigate whether the results of the electronic nose correlated well with the results of the bacteriological analysis, partial least squares (PLS) calibration models were built and validated. Good correlation coefficients between the electronic nose signals and bacteriological data were obtained, a clear indication that the electronic nose system can become a simple and rapid technique for the quality control of red meats.

摘要

本研究的目的是开发一种用于红肉质量控制的电子鼻。进行电子鼻和细菌学测量,以分析在4°C下储存长达15天的牛肉和羊肉样本。基于主成分分析(PCA)和支持向量机(SVM)的分类技术被用于研究电子鼻系统在红肉腐败分类中的性能。选择细菌学方法作为参考方法,以持续训练电子鼻系统。建立的支持向量机模型根据总微生物数量将肉类样本分为“未变质”(微生物计数<6 log10 cfu/g)和“变质”(微生物计数≥6 log10 cfu/g)。通过细菌总活菌数(TVC)获得的初步结果表明,在4°C下储存的牛肉和羊肉的保质期分别为7天和5天。与支持向量机相结合的电子鼻系统能够分别以98.81%或96.43%的成功率区分未变质/变质的牛肉或羊肉。为了研究电子鼻的结果与细菌学分析的结果是否具有良好的相关性,建立并验证了偏最小二乘法(PLS)校准模型。电子鼻信号与细菌学数据之间获得了良好的相关系数,这清楚地表明电子鼻系统可以成为一种用于红肉质量控制的简单快速技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a50/3681149/1e194fe4f074/sensors-08-00142f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验