National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, P. R. China.
Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan.
Acc Chem Res. 2022 Jul 19;55(14):1949-1959. doi: 10.1021/acs.accounts.2c00239. Epub 2022 Jul 8.
Oxygen-involved electrocatalytic processes, including the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), are central to a series of advanced modern energy and conversion technologies, such as water electrolyzers, fuel cells, and CO reduction or N fixation devices. A comprehensive and in-depth understanding of the charge transfer and energy conversion process that ubiquitously occurs over solid-liquid electrochemical interfaces during oxygen electrocatalysis is crucial for understanding the key essence of oxygen-related electrochemistry. The huge challenges for dynamic studies over solid-liquid interfaces during oxygen electrocatalysis lie in the all-embracing electrochemical processes of the catalytic reactions, associated with both structural and reactive intermediates evolution on the electrode surface, and in the significant influence of the aqueous environments of electrolytes used. Hence, overcoming these challenges intrinsically calls for a great cooperation of multiple cutting-edge in situ technologies. Synchrotron radiation (SR) X-ray absorption fine structure (SR-XAFS) spectroscopy is highly sensitive to the local atomic structure of nanomaterials, and SR-based Fourier transform infrared (SR-FTIR) spectroscopy features unique molecular fingerprint identification to determine active species on the surface of electrodes. One can imagine that the correlative in situ SR-XAFS/FTIR spectroscopic investigations will potentially provide sufficient, reliable, and complementary information at the atomic/molecular level to depict vivid and comprehensive "dynamic movies" of solid-liquid electrochemical interfaces during oxygen electrocatalysis, which will help effectively promote/simplify the complicated screening process of advanced oxygen electrocatalysts for efficient high-energy-density energy systems.In this Account, starting with some fundamentals of SR-based spectroscopic technologies, tips for obtaining high-quality SR-XAFS and SR-FTIR spectroscopy results during the electrocatalytic process are comprehensively specified. Subsequently, the latest research achievements of dynamic investigations mainly from our group based on in situ SR-XAFS and/or SR-FTIR spectroscopies will be systematically scrutinized and properly emphasized in detail, where the currently attractive metal-organic-framework (MOF) nanomaterials and single-atom catalysts (SACs) are selected as the main object of research. Moreover, the vital contributions of correlative in situ SR-XAFS/FTIR studies on new discoveries of the dynamic evolution of solid-liquid interfaces during oxygen electrocatalysis are highlighted. In particular, our pioneering research found that the potential-dependent dynamically coupled oxygen formed in the precatalytic stage was a very useful promoter in SACs to promote efficient OER kinetics under acidic conditions. In addition, the in situ generated metastable Ni-N centers with more structural degrees of freedom in SACs could potentially facilitate the fast 4e ORR kinetics. This Account is anticipated to stimulate broad interest in dynamic explorations in various catalytic processes of interest in the material science and electrochemistry communities using correlative SR-based technologies.
氧参与的电催化过程,包括析氧反应(OER)和氧还原反应(ORR),是一系列先进的现代能源和转化技术的核心,如水电解槽、燃料电池和 CO 还原或 N 固定装置。全面深入地了解在氧气电催化过程中固液电化学界面上普遍发生的电荷转移和能量转换过程,对于理解与氧气相关的电化学的关键本质至关重要。在氧气电催化过程中,动态研究固液界面所面临的巨大挑战在于催化反应的全面电化学过程,这涉及到电极表面结构和反应中间体的演化,以及电解质水溶液环境的显著影响。因此,克服这些挑战本质上需要多种前沿原位技术的紧密合作。同步辐射(SR)X 射线吸收精细结构(SR-XAFS)光谱对纳米材料的局部原子结构非常敏感,而基于同步辐射的傅立叶变换红外(SR-FTIR)光谱则具有独特的分子指纹识别功能,可确定电极表面的活性物质。可以想象,相关的原位 SR-XAFS/FTIR 光谱研究将有可能在原子/分子水平上提供足够、可靠和互补的信息,以描绘氧气电催化过程中固液电化学界面生动而全面的“动态电影”,这将有助于有效促进/简化高效高能密度能源系统中先进氧气电催化剂的复杂筛选过程。
本综述从基于同步辐射的光谱技术的一些基础开始,全面说明了在电催化过程中获得高质量 SR-XAFS 和 SR-FTIR 光谱结果的技巧。随后,系统地审查并详细强调了我们小组基于原位 SR-XAFS 和/或 SR-FTIR 光谱的最新动态研究成果,其中选择了有吸引力的金属有机骨架(MOF)纳米材料和单原子催化剂(SAC)作为主要研究对象。此外,还强调了相关原位 SR-XAFS/FTIR 研究在氧气电催化过程中固液界面动态演化新发现方面的重要贡献。特别是,我们的开创性研究发现,预催化阶段形成的与电位相关的动态耦合氧是 SAC 中促进酸性条件下高效 OER 动力学的非常有用的促进剂。此外,SAC 中具有更多结构自由度的原位生成的亚稳 Ni-N 中心可能有助于快速的 4e ORR 动力学。本综述预计将激发材料科学和电化学领域中对使用相关基于同步辐射的技术进行各种感兴趣的催化过程的动态探索的广泛兴趣。