Department of Mathematical Science, College of Engineering, University of Business and Technology, Jeddah 21361, Saudi Arabia.
Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
Math Biosci Eng. 2022 Jun 9;19(8):8380-8410. doi: 10.3934/mbe.2022390.
Coronavirus disease 2019 (COVID-19) is a new viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Malaria is a parasitic disease caused by Plasmodium parasites. In this paper, we explore a within-host model of SARS-CoV-2/malaria coinfection. This model consists of seven ordinary differential equations that study the interactions between uninfected red blood cells, infected red blood cells, free merozoites, uninfected epithelial cells, infected epithelial cells, free SARS-CoV-2 particles, and antibodies. We show that the model has bounded and nonnegative solutions. We compute all steady state points and derive their existence conditions. We use appropriate Lyapunov functions to confirm the global stability of all steady states. We enhance the reliability of the theoretical results by performing numerical simulations. The steady states reflect the monoinfection and coinfection with malaria and SARS-CoV-2. The shared immune response reduces the concentrations of malaria merozoites and SARS-CoV-2 particles in coinfected patients. This response reduces the severity of SARS-CoV-2 infection in this group of patients.
新型冠状病毒病 2019(COVID-19)是由严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)引起的一种新的病毒性疾病。疟疾是一种由疟原虫引起的寄生虫病。在本文中,我们探讨了 SARS-CoV-2/疟疾合并感染的体内模型。该模型由七个常微分方程组成,用于研究未感染的红细胞、感染的红细胞、游离疟原虫、未感染的上皮细胞、感染的上皮细胞、游离的 SARS-CoV-2 颗粒和抗体之间的相互作用。我们表明,该模型具有有界和非负解。我们计算了所有的稳定状态点,并推导了它们的存在条件。我们使用适当的李雅普诺夫函数来确认所有稳定状态的全局稳定性。我们通过进行数值模拟来提高理论结果的可靠性。稳定状态反映了疟疾和 SARS-CoV-2 的单感染和合并感染。共同的免疫反应降低了合并感染患者中疟疾疟原虫和 SARS-CoV-2 颗粒的浓度。这种反应降低了这组患者中 SARS-CoV-2 感染的严重程度。