Suppr超能文献

使用可生物降解丝材料对高含量活性成分进行微囊化处理。

Microencapsulation of High-Content Actives Using Biodegradable Silk Materials.

机构信息

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

BASF SE, Carl-Bosch-Straße 38, 67063, Ludwigshafen am Rhein, Germany.

出版信息

Small. 2022 Aug;18(31):e2201487. doi: 10.1002/smll.202201487. Epub 2022 Jul 8.

Abstract

There is a compelling need across several industries to substitute non-degradable, intentionally added microplastics with biodegradable alternatives. Nonetheless, stringent performance criteria in actives' controlled release and manufacturing at scale of emerging materials hinder the replacement of polymers used for microplastics fabrication with circular ones. Here, the authors demonstrate that active microencapsulation in a structural protein such as silk fibroin can be achieved by modulating protein protonation and chain relaxation at the point of material assembly. Silk fibroin micelles' size is tuned from several to hundreds of nanometers, enabling the manufacturing-by retrofitting spray drying and spray freeze drying techniques-of microcapsules with tunable morphology and structure, that is, hollow-spongy, hollow-smooth, hollow crumpled matrices, and hollow crumpled multi-domain. Microcapsules degradation kinetics and sustained release of soluble and insoluble payloads typically used in cosmetic and agriculture applications are controlled by modulating fibroin's beta-sheet content from 20% to near 40%. Ultraviolet-visible studies indicate that burst release of a commonly used herbicide (i.e., saflufenacil) significantly decreases from 25% to 0.8% via silk fibroin microencapsulation. As a proof-of-concept for agrochemicals applications, a 6-day greenhouse trial demonstrates that saflufenacil delivered on corn plants via silk microcapsules reduces crop injury when compared to the non-encapsulated version.

摘要

在多个行业中,都迫切需要用可生物降解的替代品来替代不可降解的、有意添加的微塑料。然而,新兴材料在活性物质的控制释放和规模化生产方面严格的性能标准,阻碍了用于制造微塑料的聚合物被循环聚合物所取代。在这里,作者通过调节材料组装时蛋白质的质子化和链松弛,证明了在结构蛋白(如丝素蛋白)中进行活性微封装是可行的。丝素蛋白胶束的大小可以从几纳米调至几百纳米,从而能够通过对喷雾干燥和喷雾冷冻干燥技术进行改造,制造出具有可调形态和结构的微胶囊,即具有空心海绵状、空心光滑状、空心皱缩状基质和空心皱缩多域的微胶囊。通过调节丝素蛋白的β-折叠含量从 20%到接近 40%,可以控制微胶囊的降解动力学和可溶性和不溶性有效载荷的持续释放,这些有效载荷通常用于化妆品和农业应用。紫外可见研究表明,通过丝素蛋白微封装,一种常用除草剂(即甲磺草胺)的突释释放从 25%显著降低至 0.8%。作为农药应用的概念验证,为期 6 天的温室试验表明,与未封装的甲磺草胺相比,通过丝素微胶囊输送到玉米植株上的甲磺草胺可降低作物损伤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验