School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, Jilin, 130022, China.
College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
Comput Biol Med. 2022 Aug;147:105752. doi: 10.1016/j.compbiomed.2022.105752. Epub 2022 Jun 24.
Intradialytic hypotension (IDH) is a serious complication of hemodialysis (HD), with an incidence of more than 20%. IDH induces ischemic organ damage and even reduces the ultrafiltration and duration of HD sessions. Frequent attacks of IDH are a risk factor for death in HD patients. Malnutrition is common in HD patients and is also associated with mortality. Although the link between IDH episodes and malnutrition has been observed in practice, it has not been supported by the data. To study the relationship, we propose a promising hybrid model called BSCWJAYA_KELM, which is a wrapper feature selection method based on a variant of the JAYA optimization algorithm (SCWJAYA) and Kernel extreme learning machine (KELM). In this paper, we verify the optimization capability of the SCWJAYA algorithm in the model by comparing experiments with some state-of-the-art methods for IEEE CEC2014, IEEE CEC2017, and IEEE CEC2019 benchmark functions. The prediction accuracy of BSCWJAYA_KELM is validated by the public datasets and the HD dataset. In the experiments on the HD dataset, 1940 HD sessions of 178 HD patients are analyzed by the developed BSCWJAYA_KELM model. The key indicators selected from vast amounts of data are serum uric acid, dialysis vintage, age, diastolic pressure, and albumin. The BSCWJAYA_KELM method is a stable and excellent prediction model that can achieve a more accurate prediction of IDH.
透析中低血压 (IDH) 是血液透析 (HD) 的严重并发症,发病率超过 20%。IDH 可导致缺血性器官损伤,甚至减少 HD 治疗的超滤和持续时间。IDH 的频繁发作是 HD 患者死亡的一个危险因素。营养不良在 HD 患者中很常见,并且与死亡率相关。尽管在实践中观察到 IDH 发作与营养不良之间存在关联,但数据并未对此提供支持。为了研究这种关系,我们提出了一种名为 BSCWJAYA_KELM 的有前途的混合模型,它是一种基于 JAYA 优化算法 (SCWJAYA) 变体的包装特征选择方法和核极端学习机 (KELM)。在本文中,我们通过与一些最先进的方法进行比较实验,验证了 SCWJAYA 算法在模型中的优化能力,这些方法用于 IEEE CEC2014、IEEE CEC2017 和 IEEE CEC2019 基准函数。通过公共数据集和 HD 数据集验证了 BSCWJAYA_KELM 的预测准确性。在 HD 数据集的实验中,我们对 178 名 HD 患者的 1940 个 HD 疗程进行了分析,开发的 BSCWJAYA_KELM 模型选择了大量数据中的关键指标,包括血清尿酸、透析年限、年龄、舒张压和白蛋白。BSCWJAYA_KELM 方法是一种稳定且出色的预测模型,可实现对 IDH 的更准确预测。