Suppr超能文献

机器学习在奶牛专用挤奶中的潜力:自动设置挤奶机变量

The Potentialities of Machine Learning for Cow-Specific Milking: Automatically Setting Variables in Milking Machines.

作者信息

Wang Jintao, Lovarelli Daniela, Rota Nicola, Shen Mingxia, Lu Mingzhou, Guarino Marcella

机构信息

Laboratory of Modern Facility Agriculture Technology and Equipment Engineering, College of Engineering, Nanjing Agricultural University, 40, Dianjiangtai Road, Nanjing 210031, China.

Department of Environmental Science and Policy, University of Milan, Via G. Celoria 2, 20133 Milan, Italy.

出版信息

Animals (Basel). 2022 Jun 23;12(13):1614. doi: 10.3390/ani12131614.

Abstract

In dairy farming, milking-related operations are time-consuming and expensive, but are also directly linked to the farm's economic profit. Therefore, reducing the duration of milking operations without harming the cows is paramount. This study aimed to test the variation in different parameters of milking operations on non-automatic milking machines to evaluate their effect on a herd and finally reduce the milking time. Two trials were set up on a dairy farm in Northern Italy to explore the influence of the pulsation ratio (60:40 vs. 65:35 pulsation ratio) and that of the detachment flow rate (600 g/min vs. 800 g/min) on milking performance, somatic cell counts, clinical mastitis, and teats score. Moreover, the innovative aspect of this study relates to the development of an optimized least-squares support vector machine (LSSVM) classification model based on the sparrow search algorithm (SSA) to predict the proper pulsation ratio and detachment flow rate for individual cows within the first two minutes of milking. The accuracy and precision of this model were 92% and 97% for shortening milking time at different pulsation ratios, and 78% and 79% for different detachment rates. The implementation of this algorithm in non-automatic milking machines could make milking operations cow-specific.

摘要

在奶牛养殖中,与挤奶相关的操作既耗时又昂贵,但也与农场的经济利润直接相关。因此,在不伤害奶牛的前提下缩短挤奶操作的持续时间至关重要。本研究旨在测试非自动挤奶机上挤奶操作不同参数的变化,以评估其对牛群的影响,最终缩短挤奶时间。在意大利北部的一个奶牛场进行了两项试验,以探究脉动比率(60:40与65:35脉动比率)和脱开流速(600克/分钟与800克/分钟)对挤奶性能、体细胞计数、临床乳腺炎和乳头评分的影响。此外,本研究的创新之处在于基于麻雀搜索算法(SSA)开发了一种优化的最小二乘支持向量机(LSSVM)分类模型,以预测挤奶前两分钟内每头奶牛的合适脉动比率和脱开流速。该模型在不同脉动比率下缩短挤奶时间的准确率和精确率分别为92%和97%,在不同脱开流速下分别为78%和79%。在非自动挤奶机上实施该算法可使挤奶操作针对每头奶牛进行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e396/9265131/661cbca93bf3/animals-12-01614-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验