Suppr超能文献

Energy Efficiency in CO Laser Processing of Hardox 400 Material.

作者信息

Girdu Constantin Cristinel, Gheorghe Catalin

机构信息

Department of Manufacturing Engineering, Transilvania University of Brasov, Eroilor Street 29, 500036 Brasov, Romania.

Department of Engineering and Industrial Management, Transilvania University of Brasov, Eroilor Street 29, 500036 Brasov, Romania.

出版信息

Materials (Basel). 2022 Jun 26;15(13):4505. doi: 10.3390/ma15134505.

Abstract

The use of laser technology for materials processing has a wide applicability in various industrial fields, due to its proven advantages, such as processing time, economic efficiency and reduced impact on the natural environment. The expansion of laser technology has been possible due to the dynamics of research in the field. One of the directions of research is to establish the appropriate cutting parameters. The evolution of research in this direction can be deepened by determining the efficiency of laser cutting. Starting from such a hypothesis, the study contains an analysis of laser cutting parameters (speed, power and pressure) to determine the linear energy and cutting efficiency. For this purpose, the linear energy and the cutting efficiency were determined analytically, and the results obtained were tested with the Lagrange interpolation method, the statistical mathematical method and the graphical method. The material chosen was Hardox 400 steel with a thickness of 8 mm, due to its numerous industrial applications and the fact that it is an insufficiently studied material. Statistical data processing shows that the maximum cutting efficiency is mainly influenced by speed, followed by laser power. The results obtained reduce energy costs in manufacturing processes that use the CO laser. The combinations identified between laser speed and power lead to a reduction in energy consumption and thus to an increase in processing efficiency. Through the calculation relationships established for linear energy and cutting efficiency, the study contributes to the extension of the theoretical and practical basis.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb0/9267818/70b0e64401d8/materials-15-04505-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验