Suppr超能文献

具有包含 -四硫富瓦烯-四苯二甲酸酯的三维晶格的氧化还原活性金属有机骨架。

Redox-Active Metal-Organic Frameworks with Three-Dimensional Lattice Containing the -Tetrathiafulvalene-Tetrabenzoate.

机构信息

School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.

出版信息

Molecules. 2022 Jun 23;27(13):4052. doi: 10.3390/molecules27134052.

Abstract

Metal-organic frameworks (MOFs) constructed by tetrathiafulvalene-tetrabenzoate (HTTFTB) have been widely studied in porous materials, while the studies of other TTFTB derivatives are rare. Herein, the meta derivative of the frequently used -HTTFTB ligand, -HTTFTB, and lanthanide (Ln) metal ions (Tb, Er, and Gd) were assembled into three novel MOFs. Compared with the reported porous Ln-TTFTB, the resulted three-dimensional frameworks, Ln--TTFTB ([Ln(-TTFTB)(-HTTFTB)(HCOO)(DMF)]·2DMF·3HO), possess a more dense stacking which leads to scarce porosity. The solid-state cyclic voltammetry studies revealed that these MOFs show similar redox activity with two reversible one-electron processes at 0.21 and 0.48 V (vs. Fc/Fc). The results of magnetic properties suggested Dy--TTFTB and Er--TTFTB exhibit slow relaxation of the magnetization. Porosity was not found in these materials, which is probably due to the meta-configuration of the -TTFTB ligand that seems to hinder the formation of pores. However, the -TTFTB ligand has shown to be promising to construct redox-active or electrically conductive MOFs in future work.

摘要

四硫富瓦烯-四苯甲酸(HTTFTB)构建的金属-有机骨架(MOFs)在多孔材料中得到了广泛的研究,而其他 TTFTB 衍生物的研究则很少。在此,我们将常用的 -HTTFTB 配体的间位衍生物,-HTTFTB,与镧系金属离子(Tb、Er 和 Gd)组装成三种新型 MOFs。与报道的多孔 Ln-TTFTB 相比,所得的三维框架 Ln--TTFTB([Ln(-TTFTB)(-HTTFTB)(HCOO)(DMF)]·2DMF·3HO)具有更密集的堆积,导致孔隙率稀少。固态循环伏安法研究表明,这些 MOFs 具有相似的氧化还原活性,在 0.21 和 0.48 V(相对于 Fc/Fc)处具有两个可逆的单电子过程。磁性研究结果表明 Dy--TTFTB 和 Er--TTFTB 表现出磁化的缓慢弛豫。在这些材料中没有发现孔隙率,这可能是由于 -TTFTB 配体的间位构型似乎阻碍了孔隙的形成。然而,-TTFTB 配体有望在未来的工作中构建氧化还原活性或导电 MOFs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d090/9268712/1312c10bdce0/molecules-27-04052-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验