Bashir Seemab, Ramzan Muhammad, Ghazwani Hassan Ali S, Nisar Kottakkaran Sooppy, Saleel C Ahamed, Abdelrahman Anas
Department of Mathematics, Air University, Islamabad 44000, Pakistan.
Department of Computer Science, Bahria University, Islamabad 44000, Pakistan.
Nanomaterials (Basel). 2022 Jun 25;12(13):2181. doi: 10.3390/nano12132181.
This study emphasizes the performance of two-dimensional electrically non-conducting Oldroyd-B fluid flowing across a stretching sheet with thermophoretic particle deposition. The heat and mass transfer mechanisms are elaborated in the presence of a magnetic dipole, which acts as an external magnetic field. The fluid possesses magnetic characteristics due to the presence of ferrite particles. The gyrotactic microorganisms are considered to keep the suspended ferromagnetic particles stable. Cattaneo-Christov heat flux is cogitated instead of the conventional Fourier law. Further, to strengthen the heat transfer and mass transfer processes, thermal stratification and chemical reaction are employed. Appropriate similarity transformations are applied to convert highly nonlinear coupled partial differential equations into non-linear ordinary differential equations (ODEs). To numerically solve these ODEs, an excellent MATLAB bvp4c approach is used. The physical behavior of important parameters and their graphical representations are thoroughly examined. The tables are presented to address the thermophoretic particle velocity deposition, rate of heat flux, and motile microorganisms' density number. The results show that the rate of heat transfer decreases as the value of the thermal relaxation time parameter surges. Furthermore, when the thermophoretic coefficient increases, the velocity of thermophoretic deposition decreases.
本研究着重探讨了二维非导电Oldroyd-B流体在具有热泳粒子沉积的拉伸片材上流动的性能。在作为外部磁场的磁偶极子存在的情况下,详细阐述了传热和传质机制。由于铁氧体颗粒的存在,流体具有磁性特征。考虑了趋旋光性微生物以保持悬浮的铁磁颗粒稳定。采用Cattaneo-Christov热通量而非传统的傅里叶定律。此外,为了强化传热和传质过程,采用了热分层和化学反应。应用适当的相似变换将高度非线性的耦合偏微分方程转化为非线性常微分方程(ODEs)。为了对这些ODEs进行数值求解,使用了出色的MATLAB bvp4c方法。深入研究了重要参数的物理行为及其图形表示。列出表格以说明热泳粒子速度沉积、热通量率和活动微生物的密度数。结果表明,随着热弛豫时间参数值的激增,传热速率降低。此外,当热泳系数增加时,热泳沉积速度降低。