Zia Nashmia, Iqbal Zafar, Raza Abida, Zia Aadarash, Shafique Rabia, Andleeb Saiqa, Walker Gilbert C
Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan.
Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
Nanomaterials (Basel). 2022 Jun 27;12(13):2198. doi: 10.3390/nano12132198.
We hereby propose the use of stable, biocompatible, and uniformly sized polymeric micelles as high-radiotracer-payload carriers at region-of-interest with negligible background activity due to no or low offsite radiolysis. We modified glycol chitosan (GC) polymer with varying levels of palmitoylation (P) and quaternization (Q). Quaternary ammonium palmitoyl glycol chitosan (GCPQ) with a Q:P ratio of 9:35 (Q9P35GC) offers >99% biocompatibility at 10 mg mL−1. Q9P35GC micelles exhibit >99% 99mTechnetium (99mTc) radiolabeling via the stannous chloride reduction method without heat. The 99mTc-Q9P35GC micelles (65 ± 3 nm) exhibit >98% 6 h serum stability at 37 °C and 7 day of radiochemical stability at 25 °C. HepG2 cells show a higher uptake of FITC-Q9P35GC than Q13P15GC and Q20P15GC. The in vivo 24 h organ cumulated activity (MBq h) order follows: liver (234.4) > kidneys (60.95) > GIT (0.73) > spleen (88.84). The liver to organ ratio remains higher than 2.4, rendering a better contrast in the liver. The radiotracer uptake decreases significantly in fibrotic vs. normal liver, whereas a blocking study with excess Q9P35GC significantly decreases the radiotracer uptake in a healthy vs. fibrotic liver. FITC-Q9P35GC shows in vivo hepato-specific uptake. Radiotracer liver uptake profile follows reversible binding kinetics with data fitting to two-tissue compartmental (2T), and graphical Ichise multilinear analysis (MA2) with lower AIC and higher R2 values, respectively. The study concludes that 99mTc-Q9P35GC can be a robust radiotracer for noninvasive hepatocyte function assessment and diagnosis of liver fibrosis. Furthermore, its multifunctional properties enable it to be a promising platform for nanotheranostic applications.
我们在此提议使用稳定、生物相容且尺寸均匀的聚合物胶束作为高放射性示踪剂载体,用于感兴趣区域,由于不存在或低场外辐射分解,背景活性可忽略不计。我们用不同程度的棕榈酰化(P)和季铵化(Q)修饰了壳聚糖二醇(GC)聚合物。季铵化棕榈酰壳聚糖二醇(GCPQ)的Q:P比为9:35(Q9P35GC),在10 mg mL−1时具有>99%的生物相容性。Q9P35GC胶束通过氯化亚锡还原法在无加热的情况下表现出>99%的99m锝(99mTc)放射性标记。99mTc-Q9P35GC胶束(65±3 nm)在37°C下表现出>98%的6小时血清稳定性,在25°C下表现出7天的放射化学稳定性。HepG2细胞对FITC-Q9P35GC的摄取高于Q13P15GC和Q20P15GC。体内24小时器官累积活性(MBq h)顺序如下:肝脏(234.4)>肾脏(60.95)>胃肠道(0.73)>脾脏(88.84)。肝脏与器官的比值保持高于2.4,在肝脏中形成更好的对比度。与正常肝脏相比,放射性示踪剂在纤维化肝脏中的摄取显著降低,而用过量Q9P35GC进行的阻断研究显著降低了健康肝脏与纤维化肝脏中放射性示踪剂的摄取。FITC-Q9P35GC显示出体内肝脏特异性摄取。放射性示踪剂肝脏摄取曲线遵循可逆结合动力学,数据分别拟合到双组织隔室(2T)和图形化池田多线性分析(MA2),AIC较低且R2值较高。该研究得出结论,99mTc-Q9P35GC可以成为用于无创肝细胞功能评估和肝纤维化诊断的强大放射性示踪剂。此外,其多功能特性使其成为纳米诊疗应用的有前景平台。