Suppr超能文献

用于节能物联网传感器的在线有界误差查询的边缘计算

Edge Computing of Online Bounded-Error Query for Energy-Efficient IoT Sensors.

作者信息

Chang Ray-I, Tsai Jui-Hua, Wang Chia-Hui

机构信息

Department of Engineering Science and Ocean Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.

Department of Computer Science and Information Engineering, Ming Chuan University, No. 5 Der-Ming Rd., Gwei Shan District, Taoyuan City 333, Taiwan.

出版信息

Sensors (Basel). 2022 Jun 24;22(13):4799. doi: 10.3390/s22134799.

Abstract

Since the power of transmitting one-bit data is higher than that of computing one thousand lines of code in IoT (Internet of Things) applications, it is very important to reduce communication costs to save battery power and prolong system lifetime. In IoT sensors, the transformation of physical phenomena to data is usually with distortion (bounded-error tolerance). It introduces bounded-error data in IoT applications according to their required QoS (quality-of-sensor service) or QoD (quality-of-decision making). In our previous work, we proposed a bounded-error data compression scheme called BESDC (Bounded-Error-pruned Sensor Data Compression) to reduce the point-to-point communication cost of WSNs (wireless sensor networks). Based on BESDC, this paper proposes an online bounded-error query (OBEQ) scheme with edge computing to handle the entire online query process. We propose a query filter scheme to reduce the query commands, which will inform WSN to return unnecessary queried data. It not only satisfies the QoS/QoD requirements, but also reduces the communication cost to request sensing data. Our experiments use real data of WSN to demonstrate the query performance. Results show that an OBEQ with a query filter can reduce up to 88% of the communication cost when compared with the traditional online query process.

摘要

由于在物联网(Internet of Things)应用中传输一位数据的功耗高于计算一千行代码的功耗,因此降低通信成本对于节省电池电量和延长系统寿命非常重要。在物联网传感器中,物理现象到数据的转换通常存在失真(有界误差容限)。根据物联网应用所需的传感器服务质量(QoS,quality-of-sensor service)或决策质量(QoD,quality-of-decision making),这会在物联网应用中引入有界误差数据。在我们之前的工作中,我们提出了一种名为BESDC(Bounded-Error-pruned Sensor Data Compression,有界误差修剪传感器数据压缩)的有界误差数据压缩方案,以降低无线传感器网络(WSNs,wireless sensor networks)的点对点通信成本。基于BESDC,本文提出了一种带有边缘计算的在线有界误差查询(OBEQ,online bounded-error query)方案,以处理整个在线查询过程。我们提出了一种查询过滤方案来减少查询命令,这些命令会通知无线传感器网络返回不必要的查询数据。它不仅满足了QoS/QoD要求,还降低了请求传感数据的通信成本。我们的实验使用无线传感器网络的真实数据来展示查询性能。结果表明,与传统的在线查询过程相比,带有查询过滤器的OBEQ可以将通信成本降低多达88%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验