Suppr超能文献

基于有序排序的 3D 人体姿态估计的改进混合密度网络。

An Improved Mixture Density Network for 3D Human Pose Estimation with Ordinal Ranking.

机构信息

School of Computer Science, China University of Geosciences, Wuhan 430074, China.

Hubei Key Laboratory of Intelligent Robot (Wuhan Institute of Technology), Wuhan 430205, China.

出版信息

Sensors (Basel). 2022 Jul 1;22(13):4987. doi: 10.3390/s22134987.

Abstract

Estimating accurate 3D human poses from 2D images remains a challenge due to the lack of explicit depth information in 2D data. This paper proposes an improved mixture density network for 3D human pose estimation called the Locally Connected Mixture Density Network (LCMDN). Instead of conducting direct coordinate regression or providing unimodal estimates per joint, our approach predicts multiple possible hypotheses by the Mixture Density Network (MDN). Our network can be divided into two steps: the 2D joint points are estimated from the input images first; then, the information of human joints correlation is extracted by a feature extractor. After the human pose feature is extracted, multiple pose hypotheses are generated via the hypotheses generator. In addition, to make better use of the relationship between human joints, we introduce the Locally Connected Network (LCN) as a generic formulation to replace the traditional Fully Connected Network (FCN), which is applied to a feature extraction module. Finally, to select the most appropriate 3D pose result, a 3D pose selector based on the ordinal ranking of joints is adopted to score the predicted pose. The LCMDN improves the representation capability and robustness of the original MDN method notably. Experiments are conducted on the Human3.6M and MPII dataset. The average Mean Per Joint Position Error (MPJPE) of our proposed LCMDN reaches 50 mm on the Human3.6M dataset, which is on par or better than the state-of-the-art works. The qualitative results on the MPII dataset show that our network has a strong generalization ability.

摘要

由于二维数据中缺乏明确的深度信息,因此从二维图像中准确估计三维人体姿势仍然是一个挑战。本文提出了一种改进的混合密度网络,用于三维人体姿势估计,称为局部连接混合密度网络(LCMDN)。与直接进行坐标回归或为每个关节提供单峰估计不同,我们的方法通过混合密度网络(MDN)预测多个可能的假设。我们的网络可以分为两个步骤:首先从输入图像中估计二维关节点;然后,通过特征提取器提取人体关节相关性的信息。提取人体姿势特征后,通过假设生成器生成多个姿势假设。此外,为了更好地利用人体关节之间的关系,我们引入了局部连接网络(LCN)作为通用公式来替代传统的全连接网络(FCN),该网络应用于特征提取模块。最后,为了选择最合适的三维姿势结果,采用基于关节有序排序的三维姿势选择器对预测的姿势进行评分。LCMDN 显著提高了原始 MDN 方法的表示能力和鲁棒性。在 Human3.6M 和 MPII 数据集上进行了实验。我们提出的 LCMDN 在 Human3.6M 数据集上的平均关节位置误差(MPJPE)达到 50 毫米,与最先进的方法相当或更好。在 MPII 数据集上的定性结果表明,我们的网络具有很强的泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2b1/9269848/50a5f9cce24f/sensors-22-04987-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验