Suppr超能文献

基于图卷积网络的 3D 人体姿态估计识别探颈姿势:开发与可行性研究。

Recognition of Forward Head Posture Through 3D Human Pose Estimation With a Graph Convolutional Network: Development and Feasibility Study.

机构信息

Machine Learning Systems Laboratory, School of Sports Science, Sungkyunkwan University, Suwon, Gyunggi-do, Republic of Korea.

Department of Family Medicine, SMG-SNU (Seoul Metropolitan Government - Seoul National University) Boramae Medical Center, Seoul, Republic of Korea.

出版信息

JMIR Form Res. 2024 Aug 26;8:e55476. doi: 10.2196/55476.

Abstract

BACKGROUND

Prolonged improper posture can lead to forward head posture (FHP), causing headaches, impaired respiratory function, and fatigue. This is especially relevant in sedentary scenarios, where individuals often maintain static postures for extended periods-a significant part of daily life for many. The development of a system capable of detecting FHP is crucial, as it would not only alert users to correct their posture but also serve the broader goal of contributing to public health by preventing the progression of chronic injuries associated with this condition. However, despite significant advancements in estimating human poses from standard 2D images, most computational pose models do not include measurements of the craniovertebral angle, which involves the C7 vertebra, crucial for diagnosing FHP.

OBJECTIVE

Accurate diagnosis of FHP typically requires dedicated devices, such as clinical postural assessments or specialized imaging equipment, but their use is impractical for continuous, real-time monitoring in everyday settings. Therefore, developing an accessible, efficient method for regular posture assessment that can be easily integrated into daily activities, providing real-time feedback, and promoting corrective action, is necessary.

METHODS

The system sequentially estimates 2D and 3D human anatomical key points from a provided 2D image, using the Detectron2D and VideoPose3D algorithms, respectively. It then uses a graph convolutional network (GCN), explicitly crafted to analyze the spatial configuration and alignment of the upper body's anatomical key points in 3D space. This GCN aims to implicitly learn the intricate relationship between the estimated 3D key points and the correct posture, specifically to identify FHP.

RESULTS

The test accuracy was 78.27% when inputs included all joints corresponding to the upper body key points. The GCN model demonstrated slightly superior balanced performance across classes with an F-score (macro) of 77.54%, compared to the baseline feedforward neural network (FFNN) model's 75.88%. Specifically, the GCN model showed a more balanced precision and recall between the classes, suggesting its potential for better generalization in FHP detection across diverse postures. Meanwhile, the baseline FFNN model demonstrates a higher precision for FHP cases but at the cost of lower recall, indicating that while it is more accurate in confirming FHP when detected, it misses a significant number of actual FHP instances. This assertion is further substantiated by the examination of the latent feature space using t-distributed stochastic neighbor embedding, where the GCN model presented an isotropic distribution, unlike the FFNN model, which showed an anisotropic distribution.

CONCLUSIONS

Based on 2D image input using 3D human pose estimation joint inputs, it was found that it is possible to learn FHP-related features using the proposed GCN-based network to develop a posture correction system. We conclude the paper by addressing the limitations of our current system and proposing potential avenues for future work in this area.

摘要

背景

长时间保持不当姿势会导致头前倾(FHP),从而引发头痛、呼吸功能受损和疲劳。在久坐场景中,这种情况尤其明显,因为人们经常长时间保持静态姿势——这是许多人日常生活的重要组成部分。开发一种能够检测 FHP 的系统至关重要,因为它不仅可以提醒用户纠正姿势,还有助于通过预防与这种情况相关的慢性损伤的进展来促进公共健康。然而,尽管从标准 2D 图像中估计人体姿势已经取得了重大进展,但大多数计算姿势模型都不包括颅颈角的测量,而颅颈角涉及 C7 椎骨,对于 FHP 的诊断至关重要。

目的

FHP 的准确诊断通常需要专用设备,例如临床姿势评估或专门的成像设备,但在日常环境中,这些设备无法进行连续、实时的监测,因此,开发一种易于集成到日常活动中的、用于常规姿势评估的、高效且经济的方法,以便提供实时反馈并促进纠正措施是必要的。

方法

该系统使用 Detectron2D 和 VideoPose3D 算法,分别从提供的 2D 图像中顺序估计 2D 和 3D 人体解剖关键点。然后,它使用图卷积网络(GCN),该网络经过专门设计,可以分析 3D 空间中上身解剖关键点的空间配置和对齐方式。该 GCN 旨在通过识别估计的 3D 关键点与正确姿势之间的复杂关系,特别是识别 FHP,从而隐式地学习这种关系。

结果

当输入包括所有对应于上身关键点的关节时,测试准确率为 78.27%。与基线前馈神经网络(FFNN)模型的 75.88%相比,GCN 模型在所有类别上的平衡性能略优,F-分数(宏)为 77.54%。具体来说,GCN 模型在各个类别之间显示出更平衡的精度和召回率,表明其在检测各种姿势的 FHP 方面具有更好的泛化能力。同时,基线 FFNN 模型在 FHP 病例中具有更高的精度,但召回率较低,这表明虽然它在检测到 FHP 时更准确,但会错过大量实际的 FHP 实例。这一断言通过使用 t 分布随机邻居嵌入检查潜在特征空间得到进一步证实,其中 GCN 模型呈现各向同性分布,而 FFNN 模型则呈现各向异性分布。

结论

基于使用 3D 人体姿势估计关节输入的 2D 图像输入,我们发现可以使用所提出的基于 GCN 的网络学习与 FHP 相关的特征,从而开发一种姿势矫正系统。我们在论文中讨论了我们当前系统的局限性,并提出了在该领域进一步研究的潜在途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b751/11384178/af6990dbd765/formative_v8i1e55476_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验