Suppr超能文献

形态因子作为 CT 扫描中鉴别良恶性肺病变的潜在成像生物标志物。

Form Factors as Potential Imaging Biomarkers to Differentiate Benign vs. Malignant Lung Lesions on CT Scans.

机构信息

Department of Engineering, Università degli Studi di Perugia, Via Goffredo Duranti 93, 06125 Perugia, Italy.

Section of Radiation Oncology, Department of Medicine and Surgery, Università degli Studi di Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.

出版信息

Sensors (Basel). 2022 Jul 4;22(13):5044. doi: 10.3390/s22135044.

Abstract

Indeterminate lung nodules detected on CT scans are common findings in clinical practice. Their correct assessment is critical, as early diagnosis of malignancy is crucial to maximise the treatment outcome. In this work, we evaluated the role of form factors as imaging biomarkers to differentiate benign vs. malignant lung lesions on CT scans. We tested a total of three conventional imaging features, six form factors, and two shape features for significant differences between benign and malignant lung lesions on CT scans. The study population consisted of 192 lung nodules from two independent datasets, containing 109 (38 benign, 71 malignant) and 83 (42 benign, 41 malignant) lung lesions, respectively. The standard of reference was either histological evaluation or stability on radiological followup. The statistical significance was determined via the Mann-Whitney U nonparametric test, and the ability of the form factors to discriminate a benign vs. a malignant lesion was assessed through multivariate prediction models based on Support Vector Machines. The univariate analysis returned four form factors (Angelidakis compactness and flatness, Kong flatness, and maximum projection sphericity) that were significantly different between the benign and malignant group in both datasets. In particular, we found that the benign lesions were on average flatter than the malignant ones; conversely, the malignant ones were on average more compact (isotropic) than the benign ones. The multivariate prediction models showed that adding form factors to conventional imaging features improved the prediction accuracy by up to 14.5 pp. We conclude that form factors evaluated on lung nodules on CT scans can improve the differential diagnosis between benign and malignant lesions.

摘要

在临床实践中,CT 扫描检测到的肺部不确定结节是常见的发现。正确评估这些结节至关重要,因为早期诊断恶性肿瘤对于最大限度地提高治疗效果至关重要。在这项工作中,我们评估了形态因子作为影像学生物标志物在 CT 扫描中区分良性和恶性肺部病变的作用。我们测试了三种常规影像学特征、六种形态因子和两种形状特征,以确定 CT 扫描中良性和恶性肺部病变之间是否存在显著差异。研究人群包括来自两个独立数据集的 192 个肺结节,分别包含 109 个(38 个良性,71 个恶性)和 83 个(42 个良性,41 个恶性)肺结节。参考标准是组织学评估或放射学随访的稳定性。通过 Mann-Whitney U 非参数检验确定统计学意义,并通过基于支持向量机的多元预测模型评估形态因子区分良性和恶性病变的能力。单变量分析返回了四个形态因子(Angelidakis 紧凑度和平坦度、Kong 平坦度和最大投影球度),这四个形态因子在两个数据集的良性和恶性组之间均存在显著差异。特别是,我们发现良性病变的平均平坦度大于恶性病变,而恶性病变的平均紧凑度(各向同性)大于良性病变。多元预测模型表明,将形态因子添加到常规影像学特征中可以将预测准确性提高多达 14.5 个百分点。我们得出结论,CT 扫描中肺结节的形态因子可以提高良性和恶性病变之间的鉴别诊断能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c7/9269784/52a3b4b2444e/sensors-22-05044-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验