Yan Mengmeng, Wang Weidong
Urban Vocational College of Sichuan, Chengdu, China.
Sichuan Cancer Hospital & Institute, Chengdu, China.
Front Oncol. 2020 Sep 15;10:555514. doi: 10.3389/fonc.2020.555514. eCollection 2020.
To develop a diagnostic model for histological subtypes in lung cancer combined CT and FDG PET.
Machine learning binary and four class classification of a cohort of 445 lung cancer patients who have CT and PET simultaneously. The outcomes to be predicted were primary, metastases (Mts), adenocarcinoma (Adc), and squamous cell carcinoma (Sqc). The classification method is a combination of machine learning and feature selection that is a Partition-Membership. The performance metrics include accuracy (Acc), precision (Pre), area under curve (AUC) and kappa statistics.
The combination of CT and PET radiomics (CPR) binary model showed more than 98% Acc and AUC on predicting Adc, Sqc, primary, and metastases, CPR four-class classification model showed 91% Acc and 0.89 Kappa.
The proposed CPR models can be used to obtain valid predictions of histological subtypes in lung cancer patients, assisting in diagnosis and shortening the time to diagnostic.
开发一种结合CT和FDG PET的肺癌组织学亚型诊断模型。
对445例同时进行CT和PET检查的肺癌患者队列进行机器学习二分类和四分类。待预测的结果包括原发灶、转移灶(Mts)、腺癌(Adc)和鳞状细胞癌(Sqc)。分类方法是机器学习和特征选择的结合,即分区隶属度。性能指标包括准确率(Acc)、精确率(Pre)、曲线下面积(AUC)和kappa统计量。
CT和PET影像组学(CPR)二分类模型在预测Adc、Sqc、原发灶和转移灶方面的Acc和AUC均超过98%,CPR四分类模型的Acc为91%,Kappa为0.89。
所提出的CPR模型可用于获得肺癌患者组织学亚型的有效预测,辅助诊断并缩短诊断时间。