Suppr超能文献

病变勾画和强度量化对CT上肺结节纹理特征稳定性的影响:一项可重复性研究

Impact of Lesion Delineation and Intensity Quantisation on the Stability of Texture Features from Lung Nodules on CT: A Reproducible Study.

作者信息

Bianconi Francesco, Fravolini Mario Luca, Palumbo Isabella, Pascoletti Giulia, Nuvoli Susanna, Rondini Maria, Spanu Angela, Palumbo Barbara

机构信息

Department of Engineering, Università Degli Studi di Perugia, Via Goffredo Duranti 93, 06135 Perugia, Italy.

Section of Radiation Oncology, Department of Medicine and Surgery, Università Degli Studi di Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.

出版信息

Diagnostics (Basel). 2021 Jul 6;11(7):1224. doi: 10.3390/diagnostics11071224.

Abstract

Computer-assisted analysis of three-dimensional imaging data () has received a lot of research attention as a possible means to improve the management of patients with lung cancer. Building robust predictive models for clinical decision making requires the imaging features to be stable enough to changes in the acquisition and extraction settings. Experimenting on 517 lung lesions from a cohort of 207 patients, we assessed the stability of 88 texture features from the following classes: first-order (13 features), Grey-level Co-Occurrence Matrix (24), Grey-level Difference Matrix (14), Grey-level Run-length Matrix (16), Grey-level Size Zone Matrix (16) and Neighbouring Grey-tone Difference Matrix (five). The analysis was based on a public dataset of lung nodules and open-access routines for feature extraction, which makes the study fully reproducible. Our results identified 30 features that had good or excellent stability relative to lesion delineation, 28 to intensity quantisation and 18 to both. We conclude that selecting the right set of imaging features is critical for building clinical predictive models, particularly when changes in lesion delineation and/or intensity quantisation are involved.

摘要

作为改善肺癌患者管理的一种可能手段,三维成像数据的计算机辅助分析已受到众多研究关注。构建用于临床决策的稳健预测模型要求成像特征在采集和提取设置发生变化时足够稳定。我们对来自207名患者队列的517个肺病变进行了实验,评估了以下类别中88个纹理特征的稳定性:一阶(13个特征)、灰度共生矩阵(24个)、灰度差分矩阵(14个)、灰度行程长度矩阵(16个)、灰度尺寸区域矩阵(16个)和邻域灰度色调差分矩阵(5个)。该分析基于一个肺结节公共数据集和用于特征提取的开放获取程序,这使得该研究完全可重复。我们的结果确定了30个相对于病变轮廓具有良好或优异稳定性的特征,28个相对于强度量化具有良好或优异稳定性的特征,以及18个相对于两者都具有良好或优异稳定性的特征。我们得出结论,选择合适的成像特征集对于构建临床预测模型至关重要,尤其是在涉及病变轮廓和/或强度量化变化时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6f4/8304812/4edfb88b79be/diagnostics-11-01224-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验