Christopoulos Stavros, Angastiniotis Nicos C, Laux-Le Guyon Valerie, Bsaibess Eliane, Koutsokeras Loukas, Duponchel Benoît, El-Rifai Joumana, Li Liang, Slimani Ahmed
Department of Sciences and Engineering, Sorbonne University Abu Dhabi, Abu Dhabi 38044, United Arab Emirates.
Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3041, Cyprus.
Polymers (Basel). 2022 Jun 28;14(13):2629. doi: 10.3390/polym14132629.
Nanocomposite polymer films are a very diverse research field due to their many applications. The search for low-cost, versatile methods, producing regulated properties of the final products, has thus become extremely relevant. We have previously reported a bulk-scale process, dispersing granulated metal oxide nanoparticles, of both unary and multi-component nature, in a low-density polyethylene (LDPE) polymer matrix, establishing a reference in the produced films' optical properties, due to the high degree of homogeneity and preservation of the primary particle size allowed by this method. In this work, unmodified, free-standing particles, namely zinc oxide (ZnO), titanium dioxide (TiO2), aluminum oxide (Al2O3), and silicon dioxide (SiO2) are blended directly with LDPE, and the optical properties of the fabricated films are compared to those of films made using the granulation process. The direct blending process evidently allows for control of the secondary particle size and ensures a homogeneous dispersion of the particles, albeit to a lesser extent than the granulation process. Despite the secondary particle size being comparatively larger than its granulated counterpart, the process still provides a regulated degree of deagglomeration of the free-standing oxide particles, so it can be used as a low-cost alternative. The regulation of the secondary particle size tunes the transmission and reflection spectra, in both unary and mixed oxide compositions. Finally, the direct blending process exhibits a clear ability to tune the energy band gap in mixed oxides.
由于其众多应用,纳米复合聚合物薄膜是一个非常多样化的研究领域。因此,寻找低成本、通用的方法来生产具有可控性能的最终产品变得极为重要。我们之前报道了一种大规模工艺,即将一元和多组分性质的粒状金属氧化物纳米颗粒分散在低密度聚乙烯(LDPE)聚合物基体中,由于该方法允许的高均匀度和初级粒径的保留,在所得薄膜的光学性能方面建立了一个参考标准。在这项工作中,未改性的独立颗粒,即氧化锌(ZnO)、二氧化钛(TiO2)、氧化铝(Al2O3)和二氧化硅(SiO2)直接与LDPE共混,并将制成薄膜的光学性能与采用造粒工艺制成的薄膜进行比较。直接共混工艺显然能够控制二次粒径,并确保颗粒的均匀分散,尽管程度低于造粒工艺。尽管二次粒径比其造粒对应物相对较大,但该工艺仍能提供独立氧化物颗粒的可控解聚程度,因此可作为一种低成本替代方法。二次粒径的调控在一元和混合氧化物组成中均能调节透射和反射光谱。最后,直接共混工艺表现出明显调节混合氧化物能带隙的能力。