Department of Biomedical Engineering, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing, China.
Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of technology, Beijing, China.
J Magn Reson Imaging. 2023 Mar;57(3):856-868. doi: 10.1002/jmri.28336. Epub 2022 Jul 9.
Studies have identified imaging markers of binge drinking. Functional connectivity during both task challenges and resting state was shown to distinguish binge and nonbinge drinkers. However, no studies have compared the efficacy of task and resting data in the classification.
Task outperforms resting-state functional magnetic resonance imaging (fMRI) data in the differentiation of binge and nonbinge drinkers. We tested the hypothesis via multiple deep learning algorithms.
Cross-sectional; retrospective.
A total of 149 binge (107 men) and 151 demographically matched, nonbinge (92 men) drinkers curated from the Human Connectome Project, with 80% randomly selected for model development and 20% for validation/test.
FIELD STRENGTH/SEQUENCE: A 3 T; fMRI with a blood oxygen level-dependent (BOLD) gradient-echo echo-planar sequence.
FMRI data of resting state and seven behavioral tasks were acquired. Graph convolutional network (GCN), long short-term memory, convolutional, and recurrent neural network models were built to distinguish bingers and nonbingers using connectivity matrices of 8, 116, and 268 regions of interest (ROI). Nodal metrics including betweenness centrality, degree centrality, clustering coefficient, efficiency, local efficiency, and shortest path length were calculated from the GCN model.
Model performance was quantified by the area under the curve (AUC) in receiver operating characteristic analysis. A P value < 0.05 was considered statistically significant.
Task outperformed resting data in classification by approximately 8% by AUC in the test set. Across models and ROI sets, the gambling, motor, language and working memory tasks, each with AUC of 0.614, 0.612, 0.605, and 0.603, performed better than resting data (AUC = 0.548). Models with 116 ROIs (AUC = 0.602) consistently outperformed those with 8 ROIs (AUC = 0.569). Task data performed best with GCN (AUC = 0.619). Nodal metrics of left supplementary motor area and right cuneus showed significant group main effect across tasks.
Neural responses to cognitive challenges relative to resting state better characterize binge drinking. The performance of different network models may depend on behavioral tasks and the number of ROIs.
3 TECHNICAL EFFICACY: Stage 2.
已有研究确定了 binge drinking 的影像学标志物。在任务挑战和静息状态下的功能连接可用于区分 binge 和非 binge 饮酒者。然而,尚无研究比较任务和静息数据在分类中的效果。
与静息状态功能磁共振成像(fMRI)数据相比,任务数据在区分 binge 和非 binge 饮酒者方面更有效。我们通过多种深度学习算法检验了这一假设。
横断面;回顾性。
共纳入 149 名 binge(107 名男性)和 151 名年龄匹配的非 binge(92 名男性)饮酒者,均来自人类连接组计划(HCP),80%随机选择用于模型开发,20%用于验证/测试。
场强/序列:3T;采用血氧水平依赖(BOLD)梯度回波平面序列的 fMRI。
采集静息状态和 7 项行为任务的 fMRI 数据。使用 8、116 和 268 个感兴趣区(ROI)的连接矩阵,构建图卷积网络(GCN)、长短期记忆、卷积和循环神经网络模型,以区分 binge 和非 binge 饮酒者。从 GCN 模型中计算节点度量,包括介数中心度、度中心度、聚类系数、效率、局部效率和最短路径长度。
采用受试者工作特征分析中的曲线下面积(AUC)来量化模型性能。P 值<0.05 被认为具有统计学意义。
在测试集中,任务数据的分类性能比静息数据高出约 8%,AUC 值更高。在各种模型和 ROI 集合中,赌博、运动、语言和工作记忆任务的 AUC 值分别为 0.614、0.612、0.605 和 0.603,优于静息数据(AUC=0.548)。具有 116 个 ROI(AUC=0.602)的模型始终优于具有 8 个 ROI(AUC=0.569)的模型。使用 GCN 时,任务数据的性能最佳(AUC=0.619)。在所有任务中,左侧辅助运动区和右侧楔前叶的节点度量均表现出显著的组间主效应。
相对于静息状态,认知挑战的神经反应能更好地描述 binge drinking。不同网络模型的性能可能取决于行为任务和 ROI 的数量。
3 级技术功效:阶段 2。