Suppr超能文献

DiffChIPL:一种基于 limma 的具有生物学重复的高通量测序数据差异峰分析方法。

DiffChIPL: a differential peak analysis method for high-throughput sequencing data with biological replicates based on limma.

机构信息

Nuclear Organization and Gene Expression Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA.

出版信息

Bioinformatics. 2022 Sep 2;38(17):4062-4069. doi: 10.1093/bioinformatics/btac498.

Abstract

MOTIVATION

ChIP-seq detects protein-DNA interactions within chromatin, such as that of chromatin structural components and transcription machinery. ChIP-seq profiles are often noisy and variable across replicates, posing a challenge to the development of effective algorithms to accurately detect differential peaks. Methods have recently been designed for this purpose but sometimes yield conflicting results that are inconsistent with the underlying biology. Most existing algorithms perform well on limited datasets. To improve differential analysis of ChIP-seq, we present a novel Differential analysis method for ChIP-seq based on Limma (DiffChIPL).

RESULTS

DiffChIPL is adaptive to asymmetrical or symmetrical data and can accurately report global differences. We used simulated and real datasets for transcription factors (TFs) and histone modification marks to validate and benchmark our algorithm. DiffChIPL shows superior performance in sensitivity and false positive rate in different simulations and control datasets. DiffChIPL also performs well on real ChIP-seq, CUT&RUN, CUT&Tag and ATAC-seq datasets. DiffChIPL is an accurate and robust method, exhibiting better performance in differential analysis for a variety of applications including TF binding, histone modifications and chromatin accessibility.

AVAILABILITY AND IMPLEMENTATION

https://github.com/yancychy/DiffChIPL.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

ChIP-seq 可检测染色质内的蛋白质-DNA 相互作用,如染色质结构成分和转录机制。ChIP-seq 图谱在复制过程中通常存在噪声和可变性,这给开发有效算法以准确检测差异峰带来了挑战。为此,最近设计了一些方法,但有时会产生与基础生物学不一致的相互矛盾的结果。大多数现有的算法在有限的数据集上表现良好。为了改善 ChIP-seq 的差异分析,我们提出了一种基于 Limma 的新型 ChIP-seq 差异分析方法(DiffChIPL)。

结果

DiffChIPL 适用于不对称或对称数据,可以准确报告全局差异。我们使用模拟数据集和转录因子 (TF) 和组蛋白修饰标记的真实数据集来验证和基准测试我们的算法。DiffChIPL 在不同的模拟和对照数据集的灵敏度和假阳性率方面表现出优越的性能。DiffChIPL 还可在真实的 ChIP-seq、CUT&RUN、CUT&Tag 和 ATAC-seq 数据集上良好运行。DiffChIPL 是一种准确而稳健的方法,在 TF 结合、组蛋白修饰和染色质可及性等多种应用的差异分析中表现出更好的性能。

可用性和实现

https://github.com/yancychy/DiffChIPL。

补充信息

补充数据可在 Bioinformatics 在线获取。

相似文献

6
Unified Analysis of Multiple ChIP-Seq Datasets.多个 ChIP-Seq 数据集的统一分析。
Methods Mol Biol. 2021;2198:451-465. doi: 10.1007/978-1-0716-0876-0_33.

引用本文的文献

本文引用的文献

1
Differential ATAC-seq and ChIP-seq peak detection using ROTS.使用ROTS进行差异ATAC-seq和ChIP-seq峰检测。
NAR Genom Bioinform. 2021 Jul 2;3(3):lqab059. doi: 10.1093/nargab/lqab059. eCollection 2021 Sep.
3
MAnorm2 for quantitatively comparing groups of ChIP-seq samples.Manorm2 用于定量比较 ChIP-seq 样本组。
Genome Res. 2021 Jan;31(1):131-145. doi: 10.1101/gr.262675.120. Epub 2020 Nov 18.
8
Integrating ChIP-seq with other functional genomics data.整合 ChIP-seq 与其他功能基因组学数据。
Brief Funct Genomics. 2018 Mar 1;17(2):104-115. doi: 10.1093/bfgp/ely002.
10
Why Batch Effects Matter in Omics Data, and How to Avoid Them.为什么组间效应在组学数据中很重要,以及如何避免它们。
Trends Biotechnol. 2017 Jun;35(6):498-507. doi: 10.1016/j.tibtech.2017.02.012. Epub 2017 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验