Suppr超能文献

基于机器学习对突尼斯北部酸性矿山排水环境中有毒金属浓度的预测

Machine learning-based prediction of toxic metals concentration in an acid mine drainage environment, northern Tunisia.

作者信息

Trifi Mariem, Gasmi Anis, Carbone Cristina, Majzlan Juraj, Nasri Nesrine, Dermech Mohja, Charef Abdelkrim, Elfil Hamza

机构信息

Georesources Laboratory, Water Research and Technology Center (CERTE), Borj-Cedria Technopole, B.P. 273, Soliman, 8020, Tunisia.

Laboratory Desalination and Natural Water Valorization (LaDVEN), Water Research and Technology Center (CERTE), Borj-Cédria Technopole, B.P. 273, Soliman, 8020, Tunisia.

出版信息

Environ Sci Pollut Res Int. 2022 Dec;29(58):87490-87508. doi: 10.1007/s11356-022-21890-8. Epub 2022 Jul 9.

Abstract

In northern Tunisia, Sidi Driss sulfide ore valorization had produced a large waste amount. The long tailings exposure period and in situ minerals interactions produced an acid mine drainage (AMD) which contributed to a strong increase in the mobility and migration of huge heavy metal (HM) quantities to the surrounding soils. In this work, the soil mineral proportions, grain sizes, physicochemical properties, SO and S contents, and Machine Learning (ML) algorithms such as the Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) models were used to predict the soil HM quantities transferred from Sidi-Driss mine drainage to surrounding soils. The results showed that the HM concentrations had significantly increased with the increase of decomposition and oxidation of galena, marcasite, pyrite, and sphalerite-marcasite and Fe-oxide-hydroxides quantities and the sulfate dissolution (marked with SO ions increase) that produced the decreased soil pH. Compared to SVM, and ANN models outputs, the RF model that revealed higher R, RPD, RPIQ, and lower error indices had satisfactorily predicted the soil HM accumulation coming from the AMD environment.

摘要

在突尼斯北部,西迪·德里斯硫化矿的资源化利用产生了大量废弃物。尾矿长期暴露以及原地矿物相互作用产生了酸性矿山排水(AMD),这导致大量重金属(HM)的迁移性和流动性大幅增加,并进入周边土壤。在这项研究中,利用土壤矿物比例、粒度、理化性质、硫含量以及随机森林(RF)、支持向量机(SVM)和人工神经网络(ANN)等机器学习(ML)算法来预测从西迪 - 德里斯矿山排水转移到周边土壤中的土壤重金属含量。结果表明,随着方铅矿、白铁矿、黄铁矿、闪锌矿 - 白铁矿以及铁的氢氧化物的分解和氧化量增加以及硫酸盐溶解(以硫酸根离子增加为标志)导致土壤pH值降低,重金属浓度显著增加。与支持向量机和人工神经网络模型的输出结果相比,随机森林模型具有更高的R、RPD、RPIQ值以及更低的误差指标,能够令人满意地预测来自酸性矿山排水环境的土壤重金属积累情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验