Suppr超能文献

基于假设无关网络的真实世界数据分析表明,昂丹司琼与降低新冠病毒感染所致任何原因死亡率相关。

Hypothesis-Agnostic Network-Based Analysis of Real-World Data Suggests Ondansetron is Associated with Lower COVID-19 Any Cause Mortality.

作者信息

Miller Gregory M, Ellis J Austin, Sarangarajan Rangaprasad, Parikh Amay, Rodrigues Leonardo O, Bruce Can, Mahaveer Chand Nischal, Smith Steven R, Richardson Kris, Vazquez Raymond, Kiebish Michael A, Haneesh Chandran, Granger Elder, Holtz Judy, Hinkle Jacob, Narain Niven R, Goodpaster Bret, Smith Jeremy C, Lupu Daniel S

机构信息

BERG, Framingham, MA, 01701, USA.

National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.

出版信息

Drugs Real World Outcomes. 2022 Sep;9(3):359-375. doi: 10.1007/s40801-022-00303-9. Epub 2022 Jul 9.

Abstract

BACKGROUND

The COVID-19 pandemic generated a massive amount of clinical data, which potentially hold yet undiscovered answers related to COVID-19 morbidity, mortality, long-term effects, and therapeutic solutions.

OBJECTIVES

The objectives of this study were (1) to identify novel predictors of COVID-19 any cause mortality by employing artificial intelligence analytics on real-world data through a hypothesis-agnostic approach and (2) to determine if these effects are maintained after adjusting for potential confounders and to what degree they are moderated by other variables.

METHODS

A Bayesian statistics-based artificial intelligence data analytics tool (bAIcis) within the Interrogative Biology platform was used for Bayesian network learning and hypothesis generation to analyze 16,277 PCR+ patients from a database of 279,281 inpatients and outpatients tested for SARS-CoV-2 infection by antigen, antibody, or PCR methods during the first pandemic year in Central Florida. This approach generated Bayesian networks that enabled unbiased identification of significant predictors of any cause mortality for specific COVID-19 patient populations. These findings were further analyzed by logistic regression, regression by least absolute shrinkage and selection operator, and bootstrapping.

RESULTS

We found that in the COVID-19 PCR+ patient cohort, early use of the antiemetic agent ondansetron was associated with decreased any cause mortality 30 days post-PCR+ testing in mechanically ventilated patients.

CONCLUSIONS

The results demonstrate how a real-world COVID-19-focused data analysis using artificial intelligence can generate unexpected yet valid insights that could possibly support clinical decision making and minimize the future loss of lives and resources.

摘要

背景

新冠疫情产生了大量临床数据,这些数据可能蕴含着与新冠发病率、死亡率、长期影响及治疗方案相关的尚未被发现的答案。

目的

本研究的目的是:(1)通过一种与假设无关的方法,对真实世界数据进行人工智能分析,以识别新冠任何原因死亡的新预测因素;(2)确定在调整潜在混杂因素后这些影响是否依然存在,以及它们在多大程度上受到其他变量的调节。

方法

在佛罗里达州中部大流行的第一年,使用疑问生物学平台内基于贝叶斯统计的人工智能数据分析工具(bAIcis)进行贝叶斯网络学习和假设生成,以分析来自279281名通过抗原、抗体或PCR方法检测SARS-CoV-2感染的住院和门诊患者数据库中的16277名PCR阳性患者。这种方法生成了贝叶斯网络,能够无偏地识别特定新冠患者群体任何原因死亡的显著预测因素。通过逻辑回归、最小绝对收缩和选择算子回归以及自抽样法对这些发现进行进一步分析。

结果

我们发现,在新冠PCR阳性患者队列中,对于机械通气患者,在PCR阳性检测后30天内早期使用止吐药昂丹司琼与任何原因死亡率降低相关。

结论

结果表明,使用人工智能对以新冠为重点的真实世界数据分析如何能够产生意想不到但有效的见解,这可能支持临床决策,并最大限度地减少未来生命和资源的损失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a96/9392822/c99a6dc650b2/40801_2022_303_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验