Suppr超能文献

基于混合深度神经网络的临床图像自动湿疹分类。

Automatic eczema classification in clinical images based on hybrid deep neural network.

机构信息

Department of Information Technology, Hazara University Mansehra, Pakistan.

Department of Information Technology, Hazara University Mansehra, Pakistan.

出版信息

Comput Biol Med. 2022 Aug;147:105807. doi: 10.1016/j.compbiomed.2022.105807. Epub 2022 Jul 6.

Abstract

The healthcare sector is the highest priority sector, and people demand the highest services and care. The fast rise of deep learning, particularly in clinical decision support tools, has provided exciting solutions primarily in medical imaging. In the past, ANNs (artificial neural networks) have been used extensively in dermatology and have shown promising results for detecting various skin diseases. Eczema represents a group of skin conditions characterized by irritated, dry, inflamed, and itchy skin. This study extends great help to automate the diagnosis process of various kinds of eczema through a Hybrid model that uses concatenated ReliefF optimized handcrafted and deep activated features and a support vector machine for classification. Deep learning models and standard image processing techniques have been used to classify eczema from images automatically. This work contributes to the first multiclass image dataset, namely EIR (Eczema image resource). The EIR dataset consists of 2039 labeled eczema images belonging to seven categories. We performed a comparative analysis of multiple ensemble models, attention mechanisms, and data augmentation techniques for this task. The respective accuracy, sensitivity, and specificity, for eczema classification by classifiers were recorded. In comparison, the proposed Hybrid 6 network achieved the highest accuracy of 88.29%, sensitivity of 85.19%, and specificity of 90.33%% among all employed models. Our findings suggest that deep learning models can classify eczema with high accuracy, and their performance is comparable to dermatologists. However, many factors have been elucidated that contribute to reducing accuracy and potential scope for improvement.

摘要

医疗保健行业是重中之重,人们对其服务和护理的要求也最高。深度学习的快速发展,尤其是在临床决策支持工具方面,为医疗影像提供了令人兴奋的解决方案。在过去,人工神经网络 (ANNs) 在皮肤科中得到了广泛应用,并在检测各种皮肤病方面显示出了有前景的结果。湿疹是一组以皮肤发炎、干燥、红肿和瘙痒为特征的皮肤病。通过使用串联 ReliefF 优化的手工和深度激活特征和支持向量机进行分类的混合模型,本研究极大地帮助实现了各种湿疹的自动诊断过程。深度学习模型和标准图像处理技术已被用于自动从图像中分类湿疹。这项工作为首个多类别图像数据集 EIR(湿疹图像资源)做出了贡献。EIR 数据集包含 2039 张属于七个类别的标记湿疹图像。我们针对这项任务比较了多个集成模型、注意力机制和数据增强技术。记录了分类器对湿疹分类的各自准确性、敏感性和特异性。相比之下,所提出的混合 6 网络在所有使用的模型中实现了最高的 88.29%的准确性、85.19%的敏感性和 90.33%的特异性。我们的研究结果表明,深度学习模型可以非常准确地分类湿疹,其性能可与皮肤科医生相媲美。然而,许多因素已经被阐明,这些因素有助于降低准确性和提高潜在的改进空间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验