Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA.
Neuron. 2022 Sep 7;110(17):2790-2801.e5. doi: 10.1016/j.neuron.2022.06.006. Epub 2022 Jul 8.
Learning and consolidation of new motor skills require plasticity in the motor cortex and striatum, two key motor regions of the brain. However, how neurons undergo synaptic changes and become recruited during motor learning to form a memory engram remains unknown. Here, we train mice on a motor learning task and use a genetic approach to identify and manipulate behavior-relevant neurons selectively in the primary motor cortex (M1). We find that the degree of M1 engram neuron reactivation correlates with motor performance. We further demonstrate that learning-induced dendritic spine reorganization specifically occurs in these M1 engram neurons. In addition, we find that motor learning leads to an increase in the strength of M1 engram neuron outputs onto striatal spiny projection neurons (SPNs) and that these synapses form clusters along SPN dendrites. These results identify a highly specific synaptic plasticity during the formation of long-lasting motor memory traces in the corticostriatal circuit.
学习和巩固新的运动技能需要大脑中两个关键的运动区域——运动皮层和纹状体——具有可塑性。然而,神经元在运动学习过程中如何发生突触变化并被募集,从而形成记忆痕迹仍不清楚。在这里,我们在一项运动学习任务中训练小鼠,并使用一种遗传方法选择性地识别和操作初级运动皮层(M1)中的与行为相关的神经元。我们发现,M1 记忆痕迹神经元的再激活程度与运动表现相关。我们进一步证明,学习诱导的树突棘重组专门发生在这些 M1 记忆痕迹神经元中。此外,我们发现运动学习导致 M1 记忆痕迹神经元输出到纹状体棘状投射神经元(SPN)的强度增加,并且这些突触沿着 SPN 树突形成簇。这些结果表明,在皮质纹状体回路中形成持久的运动记忆痕迹过程中存在高度特异性的突触可塑性。