Suppr超能文献

TatA 和 TatB 产生疏水性不匹配,这对大肠杆菌中 Tat 转运器的功能和组装很重要。

TatA and TatB generate a hydrophobic mismatch important for the function and assembly of the Tat translocon in Escherichia coli.

机构信息

Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany.

Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany; Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany.

出版信息

J Biol Chem. 2022 Sep;298(9):102236. doi: 10.1016/j.jbc.2022.102236. Epub 2022 Jul 7.

Abstract

The twin-arginine translocation (Tat) system serves to translocate folded proteins across energy-transducing membranes in bacteria, archaea, plastids, and some mitochondria. In Escherichia coli, TatA, TatB, and TatC constitute functional translocons. TatA and TatB both possess an N-terminal transmembrane helix (TMH) followed by an amphipathic helix. The TMHs of TatA and TatB generate a hydrophobic mismatch with the membrane, as the helices comprise only 12 consecutive hydrophobic residues; however, the purpose of this mismatch is unclear. Here, we shortened or extended this stretch of hydrophobic residues in either TatA, TatB, or both and analyzed effects on translocon function and assembly. We found the WT length helices functioned best, but some variation was clearly tolerated. Defects in function were exacerbated by simultaneous mutations in TatA and TatB, indicating partial compensation of mutations in each by the other. Furthermore, length variation in TatB destabilized TatBC-containing complexes, revealing that the 12-residue-length is important but not essential for this interaction and translocon assembly. To also address potential effects of helix length on TatA interactions, we characterized these interactions by molecular dynamics simulations, after having characterized the TatA assemblies by metal-tagging transmission electron microscopy. In these simulations, we found that interacting short TMHs of larger TatA assemblies were thinning the membrane and-together with laterally-aligned tilted amphipathic helices-generated a deep V-shaped membrane groove. We propose the 12 consecutive hydrophobic residues may thus serve to destabilize the membrane during Tat transport, and their conservation could represent a delicate compromise between functionality and minimization of proton leakage.

摘要

双精氨酸转运(Tat)系统用于在细菌、古菌、质体和一些线粒体中跨能量转换膜转运折叠蛋白。在大肠杆菌中,TatA、TatB 和 TatC 构成功能转位体。TatA 和 TatB 都具有一个 N 端跨膜螺旋(TMH),后面跟着一个两亲螺旋。TatA 和 TatB 的 TMHs 与膜产生疏水性不匹配,因为这些螺旋仅包含 12 个连续的疏水性残基;然而,这种不匹配的目的尚不清楚。在这里,我们缩短或延长了 TatA、TatB 或两者中的这段疏水性残基,并分析了对转位体功能和组装的影响。我们发现 WT 长度的螺旋功能最佳,但显然可以容忍一些变化。TatA 和 TatB 同时发生突变会加剧功能缺陷,表明突变在彼此之间存在部分补偿。此外,TatB 长度的变化使含有 TatBC 的复合物不稳定,表明 12 个残基长度对于这种相互作用和转位体组装很重要但不是必需的。为了进一步研究螺旋长度对 TatA 相互作用的潜在影响,我们通过分子动力学模拟对这些相互作用进行了表征,在对 TatA 组装进行了金属标记透射电子显微镜表征之后。在这些模拟中,我们发现较大的 TatA 组装体相互作用的短 TMHs 使膜变薄,与横向对齐的倾斜两亲螺旋一起产生了一个深 V 形膜槽。我们提出,这 12 个连续的疏水性残基可能在 Tat 转运过程中使膜不稳定,它们的保守性可能代表了功能和质子泄漏最小化之间的微妙妥协。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59fd/9424591/dfa8151be363/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验