Suppr超能文献

iTirps 所致 2 型糖尿病患者全因死亡率预测。

All-cause mortality prediction in T2D patients with iTirps.

机构信息

Software and Information Systems Engineering, Ben Gurion University, Beer-Sheva, Israel.

Maccabi Data Science Institute, Maccabi Healthcare Services, Tel-Aviv, Israel.

出版信息

Artif Intell Med. 2022 Aug;130:102325. doi: 10.1016/j.artmed.2022.102325. Epub 2022 May 21.

Abstract

Mortality in the type II diabetic elderly population can sometimes be prevented through intervention, for which risk assessment through predictive modeling is required. Since Electronic Health Records data are typically heterogeneous and sparse, the use of Temporal Abstraction and time intervals mining to discover frequent Time Intervals Related Patterns (TIRPs) is employed. While TIRPs are used as features for a predictive model, the temporal relations between them in general, and among each TIRP's instances are not represented. We introduce a novel TIRP based representation called integer-TIRP (iTirp) in which the TIRPs become channels containing values that represent the TIRP instances that were detected at each time point. Then the iTirp representation is fed into a Deep Learning architecture, that learns this kind of temporal relations, using a Recurrent Neural Network or a Convolutional Neural Network. Additionally, a predictive committee is introduced in which raw data and iTirp data are concatenated as inputs. Our results show that iTirps based models outperform the use of deep learning with raw data, resulting in 82% AUC.

摘要

在某些情况下,可以通过干预来预防 II 型糖尿病老年患者的死亡,这需要通过预测建模进行风险评估。由于电子健康记录数据通常具有异质性和稀疏性,因此使用时间抽象和时间间隔挖掘来发现频繁的时间间隔相关模式 (TIRP)。虽然 TIRP 被用作预测模型的特征,但它们之间的时间关系通常以及每个 TIRP 实例之间的关系并没有表示出来。我们引入了一种新的基于 TIRP 的表示形式,称为整数 TIRP (iTirp),其中 TIRP 成为包含值的通道,这些值表示在每个时间点检测到的 TIRP 实例。然后,将 iTirp 表示形式输入到深度学习架构中,该架构使用递归神经网络或卷积神经网络来学习这种时间关系。此外,引入了一个预测委员会,其中原始数据和 iTirp 数据作为输入进行连接。我们的结果表明,基于 iTirp 的模型优于使用原始数据的深度学习,AUC 达到 82%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验