Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan.
Plant Science Department, College of Agriculture, Nueva Vizcaya State University, Bayombong, Philippines.
Mol Plant Pathol. 2022 Oct;23(10):1538-1554. doi: 10.1111/mpp.13247. Epub 2022 Jul 9.
Alternaria alternata can resist high levels of reactive oxygen species (ROS). The protective roles of autophagy or autophagy-mediated degradation of peroxisomes (termed pexophagy) against oxidative stress remain unclear. The present study, using transmission electron microscopy and fluorescence microscopy coupled with a GFP-AaAtg8 proteolysis assay and an mCherry tagging assay with peroxisomal targeting tripeptides, demonstrated that hydrogen peroxide (H O ) and nitrogen depletion induced autophagy and pexophagy. Experimental evidence showed that H O triggered autophagy and the translocation of peroxisomes into the vacuoles. Mutational inactivation of the AaAtg8 gene in A. alternata led to autophagy impairment, resulting in the accumulation of peroxisomes, increased ROS sensitivity, and decreased virulence. Compared to the wild type, ΔAaAtg8 failed to detoxify ROS effectively, leading to ROS accumulation. Deleting AaAtg8 down-regulated the expression of genes encoding an NADPH oxidase and a Yap1 transcription factor, both involved in ROS resistance. Deleting AaAtg8 affected the development of conidia and appressorium-like structures. Deleting AaAtg8 also compromised the integrity of the cell wall. Reintroduction of a functional copy of AaAtg8 in the mutant completely restored all defective phenotypes. Although ΔAaAtg8 produced wild-type toxin levels in axenic culture, the mutant induced a lower level of H O and smaller necrotic lesions on citrus leaves. In addition to H O , nitrogen starvation triggered peroxisome turnover. We concluded that ΔAaAtg8 failed to degrade peroxisomes effectively, leading to the accumulation of peroxisomes and the reduction of the stress response. Autophagy-mediated peroxisome turnover could increase cell adaptability and survival under oxidative stress and starvation conditions.
链格孢可以抵抗高水平的活性氧(ROS)。自噬或过氧化物酶体的自噬介导降解(称为pexophagy)对氧化应激的保护作用尚不清楚。本研究使用透射电子显微镜和荧光显微镜,结合 GFP-AaAtg8 蛋白水解测定和过氧化物酶体靶向三肽的 mCherry 标记测定,证明了过氧化氢(H 2 O 2 )和氮饥饿诱导了自噬和 pexophagy。实验证据表明,H 2 O 2 触发了自噬和过氧化物酶体向液泡的易位。在链格孢中突变失活 AaAtg8 基因导致自噬受损,导致过氧化物酶体积累、ROS 敏感性增加和毒力降低。与野生型相比,ΔAaAtg8 无法有效解毒 ROS,导致 ROS 积累。删除 AaAtg8 下调了编码 NADPH 氧化酶和 yap1 转录因子的基因的表达,这两个基因都参与了 ROS 抗性。删除 AaAtg8 影响了分生孢子和附着胞样结构的发育。删除 AaAtg8 还破坏了细胞壁的完整性。在突变体中回补功能正常的 AaAtg8 拷贝完全恢复了所有缺陷表型。尽管 ΔAaAtg8 在无菌培养中产生了野生型毒素水平,但突变体在柑橘叶片上诱导的 H 2 O 2 水平较低,坏死病变较小。除 H 2 O 2 外,氮饥饿还触发了过氧化物酶体周转。我们得出结论,ΔAaAtg8 未能有效降解过氧化物酶体,导致过氧化物酶体积累和应激反应减少。自噬介导的过氧化物酶体周转可以增加细胞在氧化应激和饥饿条件下的适应性和生存能力。