Department of Biochemistry, Indian Institute of Science, Bengaluru, India.
Structural Bioinformatics Unit, Shivaji University, Kolhapur, India.
Biophys J. 2022 Aug 16;121(16):3103-3125. doi: 10.1016/j.bpj.2022.07.012. Epub 2022 Jul 9.
Although it is relatively unexplored, accumulating data highlight the importance of tripartite crosstalk between nucleotide excision repair (NER), DNA replication, and recombination in the maintenance of genome stability; however, elucidating the underlying mechanisms remains challenging. While Escherichia coli uvrA and uvrB can fully complement polAΔ cells in DNA replication, uvrC attenuates this alternative DNA replication pathway, but the exact mechanism by which uvrC suppresses DNA replication is unknown. Furthermore, the identity of bona fide canonical and non-canonical substrates for UvrCs are undefined. Here, we reveal that Mycobacterium tuberculosis UvrC (MtUvrC) strongly binds to, and robustly cleaves, key intermediates of DNA replication/recombination as compared with the model NER substrates. Notably, inactivation of MtUvrC ATPase activity significantly attenuated its endonuclease activity, thus suggesting a causal link between these two functions. We built an in silico model of the interaction of MtUvrC with the Holliday junction (HJ), using a combination of homology modeling, molecular docking, and molecular dynamic simulations. The model predicted residues that were potentially involved in HJ binding. Six of these residues were mutated either singly or in pairs, and the resulting MtUvrC variants were purified and characterized. Among them, residues Glu595 and Arg597 in the helix-hairpin-helix motif were found to be crucial for the interaction between MtUvrC and HJ; consequently, mutations in these residues, or inhibition of ATP hydrolysis, strongly abrogated its DNA-binding and endonuclease activities. Viewed together, these findings expand the substrate specificity landscape of UvrCs and provide crucial mechanistic insights into the interplay between NER and DNA replication/recombination.
虽然这方面的研究还相对较少,但越来越多的数据强调了核苷酸切除修复(NER)、DNA 复制和重组之间的三分体串扰在维持基因组稳定性方面的重要性;然而,阐明其潜在机制仍然具有挑战性。虽然大肠杆菌 uvrA 和 uvrB 可以完全弥补 polAΔ 细胞的 DNA 复制,但 uvrC 会削弱这种替代的 DNA 复制途径,但 uvrC 抑制 DNA 复制的确切机制尚不清楚。此外,UvrC 的真正的规范和非规范底物的身份尚未确定。在这里,我们揭示了结核分枝杆菌 UvrC(MtUvrC)与 DNA 复制/重组的关键中间体的结合和切割能力远远强于模型 NER 底物。值得注意的是,MtUvrC 解旋酶活性的失活显著削弱了其内切酶活性,因此表明这两个功能之间存在因果关系。我们使用同源建模、分子对接和分子动力学模拟的组合,构建了 MtUvrC 与 Holliday 连接(HJ)相互作用的计算模型。该模型预测了可能与 HJ 结合的残基。这 6 个残基单独或成对发生突变,然后对得到的 MtUvrC 变体进行纯化和表征。其中,螺旋-发夹-螺旋基序中的残基 Glu595 和 Arg597 被发现对于 MtUvrC 与 HJ 之间的相互作用至关重要;因此,这些残基的突变或 ATP 水解的抑制,强烈削弱了其 DNA 结合和内切酶活性。综上所述,这些发现扩展了 UvrC 的底物特异性范围,并为 NER 和 DNA 复制/重组之间的相互作用提供了重要的机制见解。