Schmid Markus, Kueppers Ulrich, Cigala Valeria, Dingwell Donald B
Ludwig-Maximilians-Universität (LMU) München, 80333 Munich, Germany.
Bull Volcanol. 2022;84(8):71. doi: 10.1007/s00445-022-01580-6. Epub 2022 Jul 4.
Explosive volcanic eruptions eject a gas-particle mixture into the atmosphere. The characteristics of this mixture in the near-vent region are a direct consequence of the underlying initial conditions at fragmentation and the geometry of the shallow plumbing system. Yet, it is not possible to observe directly the sub-surface parameters that drive such eruptions. Here, we use scaled shock-tube experiments mimicking volcanic explosions in order to elucidate the effects of a number of initial conditions. As volcanic vents can be expected to possess an irregular geometry, we utilise three vent designs, two "complex" vents and a vent with a "real" volcanic geometry. The defining geometry elements of the "complex" vents are a bilateral symmetry with a slanted top plane. The "real" geometry is based on a photogrammetric 3D model of an active volcanic vent with a steep and a diverging vent side. Particle size and density as well as experimental pressure are varied. Our results reveal a strong influence of the vent geometry, on both the direction and the magnitude of particle spreading and the velocity of particles. The overpressure at the vent herby controls the direction of the asymmetry of the gas-particle jet. These findings have implications for the distribution of volcanic ejecta and resulting areas at risk.
猛烈的火山爆发会将气体-颗粒混合物喷射到大气中。在火山喷口附近区域,这种混合物的特性是破碎时潜在初始条件以及浅层管道系统几何形状的直接结果。然而,直接观测驱动此类火山爆发的地下参数是不可能的。在此,我们使用模拟火山爆发的缩比激波管实验,以阐明一些初始条件的影响。由于预计火山喷口具有不规则的几何形状,我们采用了三种喷口设计,两个“复杂”喷口和一个具有“真实”火山几何形状的喷口。“复杂”喷口的定义几何元素是具有倾斜顶面的双侧对称。“真实”几何形状基于一个活火山喷口的摄影测量三维模型,该喷口一侧陡峭且发散。颗粒大小、密度以及实验压力都有所变化。我们的结果揭示了喷口几何形状对颗粒扩散方向和大小以及颗粒速度都有强烈影响。喷口处的超压由此控制了气体-颗粒射流不对称性的方向。这些发现对火山喷发物的分布以及由此产生的危险区域具有启示意义。