Man Kaiwen, Harring Jeffrey R, Zhan Peida
University of Alabama, Tuscaloosa, AL, USA.
University of Maryland, College Park, MD, USA.
Appl Psychol Meas. 2022 Jul;46(5):361-381. doi: 10.1177/01466216221089344. Epub 2022 May 27.
Recently, joint models of item response data and response times have been proposed to better assess and understand test takers' learning processes. This article demonstrates how biometric information such as gaze fixation counts obtained from an eye-tracking machine can be integrated into the measurement model. The proposed joint modeling framework accommodates the relations among a test taker's latent ability, working speed and test engagement level via a person-side variance-covariance structure, while simultaneously permitting the modeling of item difficulty, time-intensity, and the engagement intensity through an item-side variance-covariance structure. A Bayesian estimation scheme is used to fit the proposed model to data. Posterior predictive model checking based on three discrepancy measures corresponding to various model components are introduced to assess model-data fit. Findings from a Monte Carlo simulation and results from analyzing experimental data demonstrate the utility of the model.
最近,有人提出了项目反应数据和反应时间的联合模型,以更好地评估和理解考生的学习过程。本文展示了如何将从眼动仪获得的诸如注视次数等生物特征信息整合到测量模型中。所提出的联合建模框架通过个体侧方差协方差结构来适应考生潜在能力、工作速度和测试参与度之间的关系,同时允许通过项目侧方差协方差结构对项目难度、时间强度和参与强度进行建模。使用贝叶斯估计方案将所提出的模型拟合到数据中。引入基于与各种模型组件相对应的三种差异度量的后验预测模型检验,以评估模型与数据的拟合度。蒙特卡罗模拟的结果和实验数据分析的结果证明了该模型的实用性。