Suppr超能文献

生物特征与心理测量评估的桥接模型:项目反应、反应时间和注视点计数的三向联合建模方法。

Bridging Models of Biometric and Psychometric Assessment: A Three-Way Joint Modeling Approach of Item Responses, Response Times, and Gaze Fixation Counts.

作者信息

Man Kaiwen, Harring Jeffrey R, Zhan Peida

机构信息

University of Alabama, Tuscaloosa, AL, USA.

University of Maryland, College Park, MD, USA.

出版信息

Appl Psychol Meas. 2022 Jul;46(5):361-381. doi: 10.1177/01466216221089344. Epub 2022 May 27.

Abstract

Recently, joint models of item response data and response times have been proposed to better assess and understand test takers' learning processes. This article demonstrates how biometric information such as gaze fixation counts obtained from an eye-tracking machine can be integrated into the measurement model. The proposed joint modeling framework accommodates the relations among a test taker's latent ability, working speed and test engagement level via a person-side variance-covariance structure, while simultaneously permitting the modeling of item difficulty, time-intensity, and the engagement intensity through an item-side variance-covariance structure. A Bayesian estimation scheme is used to fit the proposed model to data. Posterior predictive model checking based on three discrepancy measures corresponding to various model components are introduced to assess model-data fit. Findings from a Monte Carlo simulation and results from analyzing experimental data demonstrate the utility of the model.

摘要

最近,有人提出了项目反应数据和反应时间的联合模型,以更好地评估和理解考生的学习过程。本文展示了如何将从眼动仪获得的诸如注视次数等生物特征信息整合到测量模型中。所提出的联合建模框架通过个体侧方差协方差结构来适应考生潜在能力、工作速度和测试参与度之间的关系,同时允许通过项目侧方差协方差结构对项目难度、时间强度和参与强度进行建模。使用贝叶斯估计方案将所提出的模型拟合到数据中。引入基于与各种模型组件相对应的三种差异度量的后验预测模型检验,以评估模型与数据的拟合度。蒙特卡罗模拟的结果和实验数据分析的结果证明了该模型的实用性。

相似文献

3
Negative Binomial Models for Visual Fixation Counts on Test Items.
Educ Psychol Meas. 2019 Aug;79(4):617-635. doi: 10.1177/0013164418824148. Epub 2019 Jan 29.
4
Joint Modeling of Compensatory Multidimensional Item Responses and Response Times.
Appl Psychol Meas. 2019 Nov;43(8):639-654. doi: 10.1177/0146621618824853. Epub 2019 Feb 22.
6
Bayesian Covariance Structure Modeling of Responses and Process Data.
Front Psychol. 2019 Aug 5;10:1675. doi: 10.3389/fpsyg.2019.01675. eCollection 2019.
8
Multimodal Data Fusion to Detect Preknowledge Test-Taking Behavior Using Machine Learning.
Educ Psychol Meas. 2024 Aug;84(4):753-779. doi: 10.1177/00131644231193625. Epub 2023 Sep 19.
9
Using Response Times to Model Not-Reached Items due to Time Limits.
Psychometrika. 2019 Sep;84(3):892-920. doi: 10.1007/s11336-019-09669-2. Epub 2019 May 3.
10
Modeling Item Revisit Behavior: The Hierarchical Speed-Accuracy-Revisits Model.
Educ Psychol Meas. 2021 Apr;81(2):363-387. doi: 10.1177/0013164420950556. Epub 2020 Aug 31.

本文引用的文献

2
Negative Binomial Models for Visual Fixation Counts on Test Items.
Educ Psychol Meas. 2019 Aug;79(4):617-635. doi: 10.1177/0013164418824148. Epub 2019 Jan 29.
3
Joint Modeling of Compensatory Multidimensional Item Responses and Response Times.
Appl Psychol Meas. 2019 Nov;43(8):639-654. doi: 10.1177/0146621618824853. Epub 2019 Feb 22.
4
How Do Test Takers Interact With Simulation-Based Tasks? A Response-Time Perspective.
Front Psychol. 2019 Apr 24;10:906. doi: 10.3389/fpsyg.2019.00906. eCollection 2019.
5
Using the Stan Program for Bayesian Item Response Theory.
Educ Psychol Meas. 2018 Jun;78(3):384-408. doi: 10.1177/0013164417693666. Epub 2017 Feb 1.
6
Cognitive diagnosis modelling incorporating item response times.
Br J Math Stat Psychol. 2018 May;71(2):262-286. doi: 10.1111/bmsp.12114. Epub 2017 Sep 5.
8
Spontaneous and imposed speed of cognitive test responses.
Br J Math Stat Psychol. 2017 May;70(2):225-237. doi: 10.1111/bmsp.12094. Epub 2017 Feb 3.
9
Modelling Conditional Dependence Between Response Time and Accuracy.
Psychometrika. 2017 Dec;82(4):1126-1148. doi: 10.1007/s11336-016-9537-6. Epub 2016 Oct 13.
10
Joint Modeling of Ability and Differential Speed Using Responses and Response Times.
Multivariate Behav Res. 2016 Jul-Aug;51(4):540-53. doi: 10.1080/00273171.2016.1171128. Epub 2016 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验