Qiao Xin, Kamata Akihito, Kara Yusuf, Potgieter Cornelis, Nese Joseph F T
University of South Florida, Tampa, FL, USA.
Southern Methodist University, Dallas, TX, USA.
Educ Psychol Meas. 2025 May 30:00131644251335914. doi: 10.1177/00131644251335914.
In this article, the beta-binomial model for count data is proposed and demonstrated in terms of its application in the context of oral reading fluency (ORF) assessment, where the number of words read correctly (WRC) is of interest. Existing studies adopted the binomial model for count data in similar assessment scenarios. The beta-binomial model, however, takes into account extra variability in count data that have been neglected by the binomial model. Therefore, it accommodates potential overdispersion in count data compared to the binomial model. To estimate model-based ORF scores, WRC and response times were jointly modeled. The full Bayesian Markov chain Monte Carlo method was adopted for model parameter estimation. A simulation study showed adequate parameter recovery of the beta-binomial model and evaluated the performance of model fit indices in selecting the true data-generating models. Further, an empirical analysis illustrated the application of the proposed model using a dataset from a computerized ORF assessment. The obtained findings were consistent with the simulation study and demonstrated the utility of adopting the beta-binomial model for count-type item responses from assessment data.
在本文中,我们提出了用于计数数据的贝塔二项式模型,并通过其在口头阅读流畅性(ORF)评估中的应用进行了演示,其中正确读出的单词数(WRC)是我们感兴趣的。现有研究在类似的评估场景中采用了用于计数数据的二项式模型。然而,贝塔二项式模型考虑了二项式模型所忽略的计数数据中的额外变异性。因此,与二项式模型相比,它能够适应计数数据中潜在的过度分散。为了估计基于模型的ORF分数,我们对WRC和反应时间进行了联合建模。采用全贝叶斯马尔可夫链蒙特卡罗方法进行模型参数估计。一项模拟研究表明贝塔二项式模型的参数恢复良好,并评估了模型拟合指数在选择真实数据生成模型方面的性能。此外,一项实证分析使用来自计算机化ORF评估的数据集说明了所提出模型的应用。获得的结果与模拟研究一致,并证明了对评估数据中的计数型项目反应采用贝塔二项式模型的实用性。