Suppr超能文献

通过创新措施评估预先知识作弊:联合建模项目反应、反应时间和视觉注视次数的多组分析

Assessing Preknowledge Cheating via Innovative Measures: A Multiple-Group Analysis of Jointly Modeling Item Responses, Response Times, and Visual Fixation Counts.

作者信息

Man Kaiwen, Harring Jeffrey R

机构信息

University of Alabama, Tuscaloosa, AL, USA.

University of Maryland, College Park, MD, USA.

出版信息

Educ Psychol Meas. 2021 Jun;81(3):441-465. doi: 10.1177/0013164420968630. Epub 2020 Oct 31.

Abstract

Many approaches have been proposed to jointly analyze item responses and response times to understand behavioral differences between normally and aberrantly behaved test-takers. Biometric information, such as data from eye trackers, can be used to better identify these deviant testing behaviors in addition to more conventional data types. Given this context, this study demonstrates the application of a new method for multiple-group analysis that concurrently models item responses, response times, and visual fixation counts collected from an eye-tracker. It is hypothesized that differences in behavioral patterns between normally behaved test-takers and those who have different levels of preknowledge about the test items will manifest in latent characteristics of the different data types. A Bayesian estimation scheme is used to fit the proposed model to experimental data and the results are discussed.

摘要

为了理解正常表现和异常表现的考生之间的行为差异,人们提出了许多方法来联合分析项目反应和反应时间。除了更传统的数据类型外,生物特征信息(如来自眼动仪的数据)可用于更好地识别这些异常的测试行为。在此背景下,本研究展示了一种用于多组分析的新方法的应用,该方法同时对从眼动仪收集的项目反应、反应时间和视觉注视次数进行建模。据推测,正常表现的考生与那些对测试项目有不同程度的先验知识的考生之间的行为模式差异将体现在不同数据类型的潜在特征中。采用贝叶斯估计方案将所提出的模型拟合到实验数据中,并对结果进行了讨论。

相似文献

4
Negative Binomial Models for Visual Fixation Counts on Test Items.
Educ Psychol Meas. 2019 Aug;79(4):617-635. doi: 10.1177/0013164418824148. Epub 2019 Jan 29.
5
Are Exam Questions Known in Advance? Using Local Dependence to Detect Cheating.
PLoS One. 2016 Dec 1;11(12):e0167545. doi: 10.1371/journal.pone.0167545. eCollection 2016.
6
Multimodal Data Fusion to Detect Preknowledge Test-Taking Behavior Using Machine Learning.
Educ Psychol Meas. 2024 Aug;84(4):753-779. doi: 10.1177/00131644231193625. Epub 2023 Sep 19.
7
Joint Modeling of Compensatory Multidimensional Item Responses and Response Times.
Appl Psychol Meas. 2019 Nov;43(8):639-654. doi: 10.1177/0146621618824853. Epub 2019 Feb 22.
8
Two New Models for Item Preknowledge.
Appl Psychol Meas. 2022 Sep;46(6):447-461. doi: 10.1177/01466216221108130. Epub 2022 Jun 22.
9
Detecting Examinees With Item Preknowledge in Large-Scale Testing Using Extreme Gradient Boosting (XGBoost).
Educ Psychol Meas. 2019 Oct;79(5):931-961. doi: 10.1177/0013164419839439. Epub 2019 Apr 2.
10
Detecting Item Preknowledge Using a Predictive Checking Method.
Appl Psychol Meas. 2017 Jun;41(4):243-263. doi: 10.1177/0146621616687285. Epub 2017 Jan 22.

引用本文的文献

1
Detecting Differential Item Functioning Using Response Time.
Educ Psychol Meas. 2024 Oct 26:00131644241280400. doi: 10.1177/00131644241280400.
2
An Ensemble Learning Approach Based on TabNet and Machine Learning Models for Cheating Detection in Educational Tests.
Educ Psychol Meas. 2024 Aug;84(4):780-809. doi: 10.1177/00131644231191298. Epub 2023 Aug 21.
4
Detecting Cheating in Large-Scale Assessment: The Transfer of Detectors to New Tests.
Educ Psychol Meas. 2023 Oct;83(5):1033-1058. doi: 10.1177/00131644221132723. Epub 2022 Nov 4.
5
Exploration of the Stacking Ensemble Machine Learning Algorithm for Cheating Detection in Large-Scale Assessment.
Educ Psychol Meas. 2023 Aug;83(4):831-854. doi: 10.1177/00131644221117193. Epub 2022 Aug 13.
8
Bayesian Analysis of Aberrant Response and Response Time Data.
Front Psychol. 2022 Apr 25;13:841372. doi: 10.3389/fpsyg.2022.841372. eCollection 2022.
9
Effects of Compounded Nonnormality of Residuals in Hierarchical Linear Modeling.
Educ Psychol Meas. 2022 Apr;82(2):330-355. doi: 10.1177/00131644211010234. Epub 2021 May 10.
10
Editorial: Process Data in Educational and Psychological Measurement.
Front Psychol. 2021 Dec 3;12:793399. doi: 10.3389/fpsyg.2021.793399. eCollection 2021.

本文引用的文献

1
Negative Binomial Models for Visual Fixation Counts on Test Items.
Educ Psychol Meas. 2019 Aug;79(4):617-635. doi: 10.1177/0013164418824148. Epub 2019 Jan 29.
2
Joint Modeling of Compensatory Multidimensional Item Responses and Response Times.
Appl Psychol Meas. 2019 Nov;43(8):639-654. doi: 10.1177/0146621618824853. Epub 2019 Feb 22.
3
A mixture model for responses and response times with a higher-order ability structure to detect rapid guessing behaviour.
Br J Math Stat Psychol. 2020 May;73(2):261-288. doi: 10.1111/bmsp.12175. Epub 2019 Aug 6.
4
An Overview of Models for Response Times and Processes in Cognitive Tests.
Front Psychol. 2019 Feb 6;10:102. doi: 10.3389/fpsyg.2019.00102. eCollection 2019.
5
Modelling Conditional Dependence Between Response Time and Accuracy.
Psychometrika. 2017 Dec;82(4):1126-1148. doi: 10.1007/s11336-016-9537-6. Epub 2016 Oct 13.
6
Joint Modeling of Ability and Differential Speed Using Responses and Response Times.
Multivariate Behav Res. 2016 Jul-Aug;51(4):540-53. doi: 10.1080/00273171.2016.1171128. Epub 2016 Jun 7.
7
A generalized linear factor model approach to the hierarchical framework for responses and response times.
Br J Math Stat Psychol. 2015 May;68(2):197-219. doi: 10.1111/bmsp.12042. Epub 2014 Aug 11.
8
Pupillography as an objective indicator of fatigue.
Curr Eye Res. 2000 Jul;21(1):535-42.
9
Autonomic balance revisited: panic anxiety and heart rate variability.
J Psychosom Res. 1998 Jan;44(1):133-51. doi: 10.1016/s0022-3999(97)00202-x.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验