Suppr超能文献

基于空间手中信息的机器人手关节-笛卡尔混合运动映射的模拟评估

Simulative Evaluation of a Joint-Cartesian Hybrid Motion Mapping for Robot Hands Based on Spatial In-Hand Information.

作者信息

Meattini Roberto, Chiaravalli Davide, Palli Gianluca, Melchiorri Claudio

机构信息

DEI-Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, Bologna, Italy.

出版信息

Front Robot AI. 2022 Jun 22;9:878364. doi: 10.3389/frobt.2022.878364. eCollection 2022.

Abstract

Two sub-problems are typically identified for the replication of human finger motions on artificial hands: the measurement of the motions on the human side and the mapping method of human hand movements (primary hand) on the robotic hand (target hand). In this study, we focus on the second sub-problem. During human to robot hand mapping, ensuring natural motions and predictability for the operator is a difficult task, since it requires the preservation of the Cartesian position of the fingertips and the finger shapes given by the joint values. Several approaches have been presented to deal with this problem, which is still unresolved in general. In this work, we exploit the spatial information available in-hand, in particular, related to the thumb-finger relative position, for combining joint and Cartesian mappings. In this way, it is possible to perform a large range of both volar grasps (where the preservation of finger shapes is more important) and precision grips (where the preservation of fingertip positions is more important) during primary-to-target hand mappings, even if kinematic dissimilarities are present. We therefore report on two specific realizations of this approach: a distance-based hybrid mapping, in which the transition between joint and Cartesian mapping is driven by the approaching of the fingers to the current thumb fingertip position, and a workspace-based hybrid mapping, in which the joint-Cartesian transition is defined on the areas of the workspace in which thumb and fingertips can get in contact. The general mapping approach is presented, and the two realizations are tested. In order to report the results of an evaluation of the proposed mappings for multiple robotic hand kinematic structures (both industrial grippers and anthropomorphic hands, with a variable number of fingers), a simulative evaluation was performed.

摘要

在人造手上复制人类手指动作通常可识别出两个子问题

人体一侧动作的测量以及人类手部动作(主手)在机器人手(目标手)上的映射方法。在本研究中,我们关注第二个子问题。在从人类手到机器人手的映射过程中,要确保操作员的自然动作和可预测性是一项艰巨的任务,因为这需要保留指尖的笛卡尔位置以及关节值所给定的手指形状。已经提出了几种方法来处理这个问题,但总体上该问题仍未得到解决。在这项工作中,我们利用手部可用的空间信息,特别是与拇指 - 手指相对位置相关的信息,来结合关节映射和笛卡尔映射。通过这种方式,即使存在运动学差异,在从主手到目标手的映射过程中,也能够执行大范围的掌侧抓握(其中保留手指形状更为重要)和精确抓握(其中保留指尖位置更为重要)。因此,我们报告了这种方法的两种具体实现:一种基于距离的混合映射,其中关节映射和笛卡尔映射之间的转换由手指接近当前拇指指尖位置驱动;另一种基于工作空间的混合映射,其中关节 - 笛卡尔转换是在工作空间中拇指和指尖可以接触的区域定义的。我们介绍了一般的映射方法,并对这两种实现进行了测试。为了报告针对多种机器人手运动学结构(包括工业夹具和拟人化手,手指数量可变)对所提出映射的评估结果,我们进行了模拟评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fad3/9258910/db0ba73502da/frobt-09-878364-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验