Suppr超能文献

用于物体操纵的人手描述与手势识别。

Human hand descriptions and gesture recognition for object manipulation.

作者信息

Cobos Salvador, Ferre Manuel, Sánchez-Urán M Ángel, Ortego Javier, Aracil Rafael

机构信息

Departamento de Automática, Ingeniería Electrónica e Informática Industrial, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal, 2 28006 Madrid, Spain.

出版信息

Comput Methods Biomech Biomed Engin. 2010 Jun;13(3):305-17. doi: 10.1080/10255840903208171.

Abstract

This work focuses on obtaining realistic human hand models that are suitable for manipulation tasks. A 24 degrees of freedom (DoF) kinematic model of the human hand is defined. The model reasonably satisfies realism requirements in simulation and movement. To achieve realism, intra- and inter-finger constraints are obtained. The design of the hand model with 24 DoF is based upon a morphological, physiological and anatomical study of the human hand. The model is used to develop a gesture recognition procedure that uses principal components analysis (PCA) and discriminant functions. Two simplified hand descriptions (nine and six DoF) have been developed in accordance with the constraints obtained previously. The accuracy of the simplified models is almost 5% for the nine DoF hand description and 10% for the six DoF hand description. Finally, some criteria are defined by which to select the hand description best suited to the features of the manipulation task.

摘要

这项工作专注于获取适用于操作任务的逼真人体手部模型。定义了一个具有24个自由度(DoF)的人体手部运动学模型。该模型在模拟和运动中合理地满足了逼真度要求。为实现逼真度,获取了手指内部和手指之间的约束。具有24个自由度的手部模型设计基于对人体手部的形态学、生理学和解剖学研究。该模型用于开发一种使用主成分分析(PCA)和判别函数的手势识别程序。根据先前获得的约束,开发了两种简化的手部描述(九个和六个自由度)。对于九个自由度的手部描述,简化模型的准确率约为5%,对于六个自由度的手部描述,准确率约为10%。最后,定义了一些标准,据此选择最适合操作任务特征的手部描述。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验