Yang Quanxin, Lyu Tu, Nan Bohang, Tie Jian, Xu Guiying
Beijing municipal key lab of advanced energy materials and technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
ACS Appl Mater Interfaces. 2022 Jul 20;14(28):32236-32243. doi: 10.1021/acsami.2c06822. Epub 2022 Jul 10.
Lead-free SnTe-based materials are expected to replace PbTe and have gained much attention from the thermoelectric community. In this work, a maximum of ∼1.31 at 873 K is attained in SnTe via promoting a high quality factor resulting from Mn alloying and BiBr doping. The results show that Mn alloying in SnTe converges the L band and the ∑ band in valence bands to supply enhanced valley degeneracy and the density of states effective mass, giving rise to a high power factor of ∼21.67 μW cm K at 723 K in SnMnTe. In addition, the subsequent BiBr doping can sharpen the top of the valence band to coordinate the contradiction between the band effective mass and the carrier mobility, thus enhancing the carrier mobility while maintaining a relatively large density of states effective mass. Consequently, a maximum power factor of 23.85 μW cm K at 873 K is achieved in SnMnTe-0.8 atom % BiBr. In addition to band sharpening, BiBr doping can also effectively suppress the bipolar effect at elevated temperatures and reduce the lattice thermal conductivity by strengthening the point defect phonon scattering. Benefitting from doping BiBr in SnMnTe optimizes the carrier mobility and suppresses the lattice thermal conductivity, resulting in a dramatically enhanced quality factor. Accordingly, an average of ∼0.62 in the temperature range of 300-873 K is obtained in SnMnTe-0.8 atom % BiBr, ∼250% increase compared with that in SnTe.
无铅的碲化锡基材料有望取代碲化铅,并已引起热电领域的广泛关注。在这项工作中,通过促进由锰合金化和溴化铋掺杂产生的高质量因子,在碲化锡中于873K时获得了最高约1.31的数值。结果表明,碲化锡中的锰合金化使价带中的L带和∑带收敛,以提供增强的能谷简并度和态密度有效质量,从而在723K时使碲化锡锰中的功率因子高达约21.67μW cm K²。此外,随后的溴化铋掺杂可以锐化价带顶部,以协调能带有效质量和载流子迁移率之间的矛盾,从而在保持相对较大的态密度有效质量的同时提高载流子迁移率。因此,在含0.8原子%溴化铋的碲化锡锰中于873K时实现了23.85μW cm K²的最大功率因子。除了能带锐化之外,溴化铋掺杂还可以有效抑制高温下的双极效应,并通过增强点缺陷声子散射来降低晶格热导率。得益于在碲化锡锰中掺杂溴化铋优化了载流子迁移率并抑制了晶格热导率,从而显著提高了品质因子。因此,在含0.8原子%溴化铋的碲化锡锰中,在300 - 873K的温度范围内平均约为0.62,与碲化锡相比增加了约250%。