Suppr超能文献

异二聚体鼠 tRNA-鸟嘌呤糖基转移酶的结构和生化研究。

Structural and Biochemical Investigation of the Heterodimeric Murine tRNA-Guanine Transglycosylase.

机构信息

Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, D-35037 Marburg, Germany.

Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 F-Strasbourg, France.

出版信息

ACS Chem Biol. 2022 Aug 19;17(8):2229-2247. doi: 10.1021/acschembio.2c00368. Epub 2022 Jul 11.

Abstract

In tRNA, tRNA, tRNA, and tRNA of most bacteria and eukaryotes, the anticodon wobble position may be occupied by the modified nucleoside queuosine, which affects the speed and the accuracy of translation. Since eukaryotes are not able to synthesize queuosine de novo, they have to salvage queuine (the queuosine base) as a micronutrient from food and/or the gut microbiome. The heterodimeric Zn containing enzyme tRNA-guanine transglycosylase (TGT) catalyzes the insertion of queuine into the above-named tRNAs in exchange for the genetically encoded guanine. This enzyme has attracted medical interest since it was shown to be potentially useful for the treatment of multiple sclerosis. In addition, TGT inactivation via gene knockout leads to the suppressed cell proliferation and migration of certain breast cancer cells, which may render this enzyme a potential target for the design of compounds supporting breast cancer therapy. As a prerequisite to fully exploit the medical potential of eukaryotic TGT, we have determined and analyzed a number of crystal structures of the functional murine TGT with and without bound queuine. In addition, we have investigated the importance of two residues of its non-catalytic subunit on dimer stability and determined the Michaelis-Menten parameters of murine TGT with respect to tRNA and several natural and artificial nucleobase substrates. Ultimately, on the basis of available TGT crystal structures, we provide an entirely conclusive reaction mechanism for this enzyme, which in detail explains why the TGT-catalyzed insertion of some nucleobases into tRNA occurs reversibly while that of others is irreversible.

摘要

在大多数细菌和真核生物的 tRNA、tRNA、tRNA 和 tRNA 中,反密码子摆动位置可能被修饰核苷 queuosine 占据,这会影响翻译的速度和准确性。由于真核生物不能从头合成 queuosine,它们必须从食物和/或肠道微生物群中回收 queuine(queuosine 碱基)作为微量营养素。异二聚体 Zn 含有酶 tRNA-鸟嘌呤转移酶 (TGT) 催化 queuine 插入上述 tRNA 中,以取代遗传编码的鸟嘌呤。由于该酶被证明对治疗多发性硬化症可能有用,因此引起了医学关注。此外,通过基因敲除使 TGT 失活会导致某些乳腺癌细胞的增殖和迁移受到抑制,这可能使该酶成为设计支持乳腺癌治疗的化合物的潜在靶标。为了充分发挥真核 TGT 的医学潜力,我们已经确定并分析了具有和不具有结合的 queuine 的功能性鼠 TGT 的多个晶体结构。此外,我们研究了其非催化亚基的两个残基对二聚体稳定性的重要性,并确定了鼠 TGT 对 tRNA 和几种天然和人工核苷底物的米氏常数参数。最终,基于现有的 TGT 晶体结构,我们为该酶提供了一个完整的反应机制,详细解释了为什么 TGT 催化的一些核苷进入 tRNA 的插入是可逆的,而其他的插入是不可逆的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验