Behrens Christina, Biela Inna, Petiot-Bécard Stéphanie, Botzanowski Thomas, Cianférani Sarah, Sager Christoph P, Klebe Gerhard, Heine Andreas, Reuter Klaus
Institut für Pharmazeutische Chemie , Philipps-Universität Marburg , Marbacher Weg 6 , D-35032 Marburg , Germany.
Laboratoire de Spectrométrie de Masse BioOrganique , Université de Strasbourg, CNRS , IPHC UMR 7178 , 67000 Strasbourg , France.
Biochemistry. 2018 Jul 3;57(26):3953-3965. doi: 10.1021/acs.biochem.8b00294. Epub 2018 Jun 14.
The bacterial enzyme tRNA-guanine transglycosylase (TGT) is involved in the biosynthesis of queuosine, a modified nucleoside present in the anticodon wobble position of tRNA, tRNA, tRNA, and tRNA. Although it forms a stable homodimer endowed with two active sites, it is, for steric reasons, able to bind and convert only one tRNA molecule at a time. In contrast, its mammalian counterpart constitutes a heterodimer consisting of a catalytic and a noncatalytic subunit, termed QTRT1 and QTRT2, respectively. Both subunits are homologous to the bacterial enzyme, yet only QTRT1 possesses all the residues required for substrate binding and catalysis. In mice, genetic inactivation of the TGT results in the uncontrolled oxidation of tetrahydrobiopterin and, accordingly, phenylketonuria-like symptoms. For this reason and because of the recent finding that mammalian TGT may be utilized for the treatment of multiple sclerosis, this enzyme is of potential medical relevance, rendering detailed knowledge of its biochemistry and structural architecture highly desirable. In this study, we performed the kinetic characterization of the murine enzyme, investigated potential quaternary structures of QTRT1 and QTRT2 via noncovalent mass spectrometry, and, finally, determined the crystal structure of the murine noncatalytic TGT subunit, QTRT2. In the crystal, QTRT2 is clearly present as a homodimer that is strikingly similar to that formed by bacterial TGT. In particular, a cluster of four aromatic residues within the interface of the bacterial TGT, which constitutes a "hot spot" for dimer stability, is present in a similar constellation in QTRT2.
细菌酶tRNA-鸟嘌呤转糖基酶(TGT)参与了queuosine的生物合成,queuosine是一种修饰核苷,存在于tRNA、tRNA、tRNA和tRNA的反密码子摆动位置。尽管它形成了一个具有两个活性位点的稳定同型二聚体,但由于空间位阻原因,它一次只能结合并转化一个tRNA分子。相比之下,其哺乳动物对应物是一个异源二聚体,分别由催化亚基和非催化亚基组成,称为QTRT1和QTRT2。两个亚基都与细菌酶同源,但只有QTRT1拥有底物结合和催化所需的所有残基。在小鼠中,TGT的基因失活导致四氢生物蝶呤不受控制的氧化,因此出现苯丙酮尿症样症状。由于这个原因,以及最近发现哺乳动物TGT可用于治疗多发性硬化症,这种酶具有潜在的医学相关性,因此非常需要详细了解其生物化学和结构架构。在这项研究中,我们对小鼠酶进行了动力学表征,通过非共价质谱研究了QTRT1和QTRT2的潜在四级结构,最后确定了小鼠非催化TGT亚基QTRT2的晶体结构。在晶体中,QTRT2明显以同型二聚体形式存在,与细菌TGT形成的二聚体惊人地相似。特别是,细菌TGT界面内的四个芳香族残基簇,构成了二聚体稳定性的“热点”,在QTRT2中也以类似的组合存在。