Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
FEBS J. 2022 Dec;289(23):7582-7604. doi: 10.1111/febs.16576. Epub 2022 Jul 22.
In the strictly anaerobic nitrate reducing bacterium Aromatoleum anaerobium, degradation of 1,3-dihydroxybenzene (1,3-DHB, resorcinol) is controlled by two bacterial enhancer-binding proteins (bEBPs), RedR1 and RedR2, which regulate the transcription of three σ -dependent promoters controlling expression of the pathway. RedR1 and RedR2 are identical over their length except for their N-terminal tail which differ in sequence and length (six and eight residues, respectively), a single change in their N-terminal domain (NTD), and nine non-identical residues in their C-terminal domain (CTD). Their NTD is composed of a GAF and a PAS domain connected by a linker helix. We show that each regulator is controlled by a different mechanism: whilst RedR1 responds to the classical NTD-mediated negative regulation that is released by the presence of its effector, RedR2 activity is constitutive and controlled through interaction with BtdS, an integral membrane subunit of hydroxyhydroquinone dehydrogenase carrying out the second step in 1,3-DHB degradation. BtdS sequesters the RedR2 regulator to the membrane through its NTD, where a four-Ile track in the PAS domain, interrupted by a Thr in RedR1, and the N-terminal tail are involved. The presence of 1,3-DHB, which is metabolized to hydroxybenzoquinone, releases RedR2 from the membrane. Most bEBPs assemble into homohexamers to activate transcription; we show that hetero-oligomer formation between RedR1 and RedR2 is favoured over homo-oligomers. However, either an NTD-truncated version of RedR1 or a full-length RedR2 are capable of promoter activation on their own, suggesting they should assemble into homohexamers in vivo. We show that promoter DNA behaves as an allosteric effector through binding the CTD to control ΔNTD-RedR1 multimerization and activity. Overall, the regulation of the 1,3-DHB anaerobic degradation pathway can be described as a novel mode of bEBP activation and assembly.
在严格厌氧的硝酸盐还原菌 Aromatoleum anaerobium 中,1,3-二羟基苯(1,3-DHB,间苯二酚)的降解受两个细菌增强子结合蛋白(bEBPs)RedR1 和 RedR2 的控制,这两种蛋白质调节三个依赖于 σ 的启动子的转录,这些启动子控制着该途径的表达。RedR1 和 RedR2 在长度上是相同的,除了它们的 N 端尾部,它们的序列和长度不同(分别为六个和八个残基),它们的 N 端结构域(NTD)有一个单一的变化,以及它们的 C 端结构域(CTD)中有九个非相同的残基。它们的 NTD 由 GAF 和 PAS 结构域组成,通过连接螺旋连接。我们表明,每个调节剂都受到不同机制的控制:虽然 RedR1 响应经典的 NTD 介导的负调节,这种调节是由其效应物的存在释放的,但 RedR2 的活性是组成型的,并通过与 BtdS 的相互作用来控制,BtdS 是羟氢醌脱氢酶的一个完整的膜亚基,进行 1,3-DHB 降解的第二步。BtdS 通过其 NTD 将 RedR2 调节剂隔离到膜中,在 RedR1 中,PAS 结构域中的四个异亮氨酸轨道被一个 Thr 中断,以及 N 端尾部都参与其中。1,3-DHB 的存在,它被代谢为羟基苯醌,将 RedR2 从膜中释放出来。大多数 bEBPs 组装成同源六聚体以激活转录;我们表明,RedR1 和 RedR2 之间的异源寡聚体形成比同源寡聚体更有利。然而,RedR1 的 NTD 截断版本或全长 RedR2 都能够独立地激活启动子,这表明它们应该在体内组装成同源六聚体。我们表明,启动子 DNA 作为变构效应物发挥作用,通过与 CTD 结合来控制 ΔNTD-RedR1 多聚体化和活性。总的来说,1,3-DHB 厌氧降解途径的调控可以被描述为一种新的 bEBP 激活和组装模式。