Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
Bacteriology Laboratory, Division of Infectious Diseases, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland.
Swiss Med Wkly. 2022 Jul 11;152:w30195. doi: 10.4414/smw.2022.w30195. eCollection 2022 Jul 4.
The main objective of this study was to propose a common definition of multidrug-resistant gram-negative organisms (GN-MDRO), which may be used for epidemiological surveillance and benchmarking.
In this retrospective data analysis, we used interpreted qualitative susceptibility data (SIR) from blood culture isolates of different gram-negative microorganisms from the ANRESIS database from 2017-2021. We first analysed testing algorithms used by different Swiss laboratories and investigated cross-resistance patterns within antibiotic groups. Comparing these data with existing international definitions, we developed two different GN-MDRO definitions, an extended one for surveillance purposes (ANRESIS-extended) and a more stringent one for clinical purposes, aimed primarily at the identification of difficult-to-treat GN-MDRO (ANRESIS-restricted). Using these novel algorithms, the rates of invasive GN-MDRO identified in our national dataset were compared with international and national definitions: the European Centre for Disease Prevention and Control (ECDC) definition, the Commission for Hospital Hygiene and Infection (KRINKO) definition and the definition proposed by the University Hospital Zurich.
SIR data of a total of 41,785 Enterobacterales, 2,919 , and 419 spp. isolates were used for the analyses. Five antibiotic categories were used for our MDRO definition: aminoglycosides, piperacillin-tazobactam, third- and fourth-generation cephalosporins, carbapenems and fluoroquinolones. Large differences were found between the testing algorithms of the different laboratories. Cross-resistance analysis within an antibiotic group revealed that the substance most likely to be effective against a particular gram-negative bacterium was not preferentially tested (e.g. amikacin for the aminoglycosides). For all bacterial species tested, the highest rates of multidrug-resistant isolates were found using the ECDC-MDR definition, followed by the ANRESIS-extended definition. The number of MDR-Enterobacterales identified using the ANRESIS-restricted definition (n = 627) was comparable to those identified using the KRINKO (n = 622) and UHZ definitions (n = 437). However, the isolates classified as MDR-Enterobacterales according to the KRINKO, UHZ and ANRESIS-restricted definitions (total n = 870) differed considerably. Only 242 of the isolates (27.8%) were uniformly classified as MDRO according to the KRINKO, UHZ and ANRESIS-restricted definitions. Comparable findings were made for Klebsiella spp. and Pseudomonas aeruginosa.
The application of different MDRO definitions leads to significant differences in not only MDRO rates but also the isolates that are eventually classified as MDRO. Therefore, defining a nationwide MDRO algorithm is crucial if data are compared between hospitals. The definition of a minimal antibiotic susceptibility testing panel would improve comparability further.
本研究的主要目的是提出一种多药耐药革兰阴性菌(GN-MDRO)的通用定义,以便用于流行病学监测和基准比较。
在这项回顾性数据分析中,我们使用了来自 2017 年至 2021 年 ANRESIS 数据库中不同革兰阴性微生物血液培养分离物的解释定性药敏数据(SIR)。我们首先分析了不同瑞士实验室使用的检测算法,并研究了抗生素组内的交叉耐药模式。将这些数据与现有的国际定义进行比较,我们制定了两种不同的 GN-MDRO 定义,一种是用于监测目的的扩展定义(ANRESIS-extended),另一种是用于临床目的的更严格定义,主要用于识别难以治疗的 GN-MDRO(ANRESIS-restricted)。使用这些新算法,我们比较了国家数据集和国际及国家定义(欧洲疾病预防控制中心[ECDC]定义、医院卫生和感染委员会[KRINKO]定义和苏黎世大学医院定义)中发现的侵袭性 GN-MDRO 发生率。
共分析了 41785 株肠杆菌科、2919 株和 419 株分离株的 SIR 数据。我们的 MDRO 定义使用了五类抗生素:氨基糖苷类、哌拉西林他唑巴坦、三代和四代头孢菌素、碳青霉烯类和氟喹诺酮类。不同实验室的检测算法存在较大差异。对同一抗生素组内的交叉耐药性分析表明,对抗特定革兰阴性菌最有效的药物并非优先检测(例如,氨基糖苷类中的阿米卡星)。对于所有测试的细菌物种,使用 ECDC-MDR 定义发现的多药耐药分离株率最高,其次是 ANRESIS-extended 定义。使用 ANRESIS-restricted 定义(n=627)确定的多药耐药肠杆菌科的数量与使用 KRINKO(n=622)和 UHZ 定义(n=437)确定的数量相当。然而,根据 KRINKO、UHZ 和 ANRESIS-restricted 定义分类为多药耐药肠杆菌科的分离株(总 n=870)差异很大。只有 242 株(27.8%)分离株根据 KRINKO、UHZ 和 ANRESIS-restricted 定义一致被归类为 MDRO。在肺炎克雷伯菌和铜绿假单胞菌中也发现了类似的结果。
不同 MDRO 定义的应用不仅导致 MDRO 发生率存在显著差异,而且最终被归类为 MDRO 的分离株也存在差异。因此,如果要在医院之间比较数据,则定义全国性 MDRO 算法至关重要。定义最小抗生素药敏检测面板将进一步提高可比性。