Suppr超能文献

随机模糊时变网络上的最小遗憾路径问题。

The minimum regret path problem on stochastic fuzzy time-varying networks.

机构信息

School of Cyberspace Science and Technology, Beijing Institute of Technology, 100081 Beijing, China.

出版信息

Neural Netw. 2022 Sep;153:450-460. doi: 10.1016/j.neunet.2022.06.029. Epub 2022 Jun 27.

Abstract

In this paper, we introduce a stochastic fuzzy time-varying minimum regret path problem (SFTMRP), which combines the characteristics of the min-max regret path and maximum probability path as a variant of the stochastic fuzzy time-varying shortest path problem, and its purpose is to find a path with the minimum regret degree in a given stochastic fuzzy time-varying network. To address this problem, we propose a random fuzzy delay neural network (RFDNN) based on novel random fuzzy delay neurons and without any training requirements. The random fuzzy delay neuron consists of six layers: an input layer, receiving layer, status layer, generation layer, sending layer, and output layer. Among them, the input and output layers are the ports of communication between neurons, and the receiving layer, status layer, generate layer, and sending layer are the information processing units of neurons. The information exchange between neurons is characterized by two kinds of signals: the shortest path signal and the maximum probability solution signal. The theoretical analysis of the proposed algorithm is carried out with respect to time-complexity and correctness. The numerical example and experimental results on 25 randomly generated stochastic fuzzy time-varying road networks with different numbers of 1000-5000 nodes show that the performance of the proposed algorithm is significantly better than that of existing algorithms.

摘要

在本文中,我们引入了一种随机模糊时变最小后悔路径问题(SFTMRP),它结合了最小-最大后悔路径和最大概率路径的特点,作为随机模糊时变最短路径问题的变体,其目的是在给定的随机模糊时变网络中找到具有最小后悔度的路径。为了解决这个问题,我们提出了一种基于新型随机模糊延迟神经元的随机模糊延迟神经网络(RFDNN),并且不需要任何训练要求。随机模糊延迟神经元由六层组成:输入层、接收层、状态层、生成层、发送层和输出层。其中,输入和输出层是神经元之间的通信端口,接收层、状态层、生成层和发送层是神经元的信息处理单元。神经元之间的信息交换由两种信号来表示:最短路径信号和最大概率解信号。对所提出算法的时间复杂度和正确性进行了理论分析。在 25 个具有不同数量的 1000-5000 个节点的随机生成的随机模糊时变道路网络上进行的数值示例和实验结果表明,所提出算法的性能明显优于现有算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验