Suppr超能文献

膜结合泛素连接酶在发育和组织稳态中的受体调控。

Receptor control by membrane-tethered ubiquitin ligases in development and tissue homeostasis.

机构信息

Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.

ħ bioconsulting llc, Stillwater, MN, United States.

出版信息

Curr Top Dev Biol. 2022;150:25-89. doi: 10.1016/bs.ctdb.2022.03.003. Epub 2022 Jun 11.

Abstract

Paracrine cell-cell communication is central to all developmental processes, ranging from cell diversification to patterning and morphogenesis. Precise calibration of signaling strength is essential for the fidelity of tissue formation during embryogenesis and tissue maintenance in adults. Membrane-tethered ubiquitin ligases can control the sensitivity of target cells to secreted ligands by regulating the abundance of signaling receptors at the cell surface. We discuss two examples of this emerging concept in signaling: (1) the transmembrane ubiquitin ligases ZNRF3 and RNF43 that regulate WNT and bone morphogenetic protein receptor abundance in response to R-spondin ligands and (2) the membrane-recruited ubiquitin ligase MGRN1 that controls Hedgehog and melanocortin receptor abundance. We focus on the mechanistic logic of these systems, illustrated by structural and protein interaction models enabled by AlphaFold. We suggest that membrane-tethered ubiquitin ligases play a widespread role in remodeling the cell surface proteome to control responses to extracellular ligands in diverse biological processes.

摘要

旁分泌细胞间通讯是所有发育过程的核心,从细胞多样化到模式形成和形态发生。在胚胎发生过程中组织形成的保真度和成年组织维持中,信号强度的精确校准对于信号受体在细胞表面的丰度的精确校准对于信号受体在细胞表面的丰度的精确校准对于信号受体在细胞表面的丰度的精确校准对于信号受体在细胞表面的丰度的精确校准对于信号受体在细胞表面的丰度的精确校准对于信号受体在细胞表面的丰度的精确校准对于信号受体在细胞表面的丰度的精确校准对于信号受体在细胞表面的丰度的精确校准对于信号受体在细胞表面的丰度的精确校准对于信号受体在细胞表面的丰度的精确校准对于信号受体在细胞表面的丰度的精确校准对于信号受体在细胞表面的丰度的精确校准对于信号受体在细胞表面的丰度的精确校准。膜结合泛素连接酶可以通过调节细胞表面信号受体的丰度来控制靶细胞对分泌配体的敏感性。我们讨论了信号转导中这一新兴概念的两个例子:(1)跨膜泛素连接酶 ZNRF3 和 RNF43,它们响应 R 分泌蛋白配体调节 WNT 和骨形态发生蛋白受体的丰度;(2)膜募集的泛素连接酶 MGRN1,它控制 Hedgehog 和黑素皮质素受体的丰度。我们专注于这些系统的机制逻辑,通过 AlphaFold 提供的结构和蛋白质相互作用模型来说明。我们认为,膜结合泛素连接酶在重塑细胞表面蛋白质组以控制对不同生物过程中外源配体的反应方面发挥了广泛的作用。

相似文献

1
Receptor control by membrane-tethered ubiquitin ligases in development and tissue homeostasis.
Curr Top Dev Biol. 2022;150:25-89. doi: 10.1016/bs.ctdb.2022.03.003. Epub 2022 Jun 11.
3
USP42 protects ZNRF3/RNF43 from R-spondin-dependent clearance and inhibits Wnt signalling.
EMBO Rep. 2021 May 5;22(5):e51415. doi: 10.15252/embr.202051415. Epub 2021 Mar 30.
4
R-spondins can potentiate WNT signaling without LGRs.
Elife. 2018 Feb 6;7:e33126. doi: 10.7554/eLife.33126.
5
Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases.
Mol Cell. 2015 May 7;58(3):522-33. doi: 10.1016/j.molcel.2015.03.015. Epub 2015 Apr 16.
6
ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner.
Nature. 2012 Apr 29;485(7397):195-200. doi: 10.1038/nature11019.
8
Interaction with both ZNRF3 and LGR4 is required for the signalling activity of R-spondin.
EMBO Rep. 2013 Dec;14(12):1120-6. doi: 10.1038/embor.2013.167. Epub 2013 Oct 29.
9
Non-equivalence of Wnt and R-spondin ligands during Lgr5 intestinal stem-cell self-renewal.
Nature. 2017 May 11;545(7653):238-242. doi: 10.1038/nature22313. Epub 2017 May 3.
10
Structures of Wnt-antagonist ZNRF3 and its complex with R-spondin 1 and implications for signaling.
PLoS One. 2013 Dec 12;8(12):e83110. doi: 10.1371/journal.pone.0083110. eCollection 2013.

引用本文的文献

1
Structural insights into the LGR4-RSPO2-ZNRF3 complexes regulating WNT/β-catenin signaling.
Nat Commun. 2025 Jan 3;16(1):362. doi: 10.1038/s41467-024-55431-3.
2
Wnt signalosomes: What we know that we do not know.
Bioessays. 2025 Feb;47(2):e2400110. doi: 10.1002/bies.202400110. Epub 2024 Nov 9.
3
Signaling pathways associated with Lgr6 to regulate osteogenesis.
Bone. 2024 Oct;187:117207. doi: 10.1016/j.bone.2024.117207. Epub 2024 Jul 19.
4
The importance of protein domain mutations in cancer therapy.
Heliyon. 2024 Mar 9;10(6):e27655. doi: 10.1016/j.heliyon.2024.e27655. eCollection 2024 Mar 30.
5

本文引用的文献

1
Improved prediction of protein-protein interactions using AlphaFold2.
Nat Commun. 2022 Mar 10;13(1):1265. doi: 10.1038/s41467-022-28865-w.
3
The role of R-spondin proteins in cancer biology.
Oncogene. 2021 Nov;40(47):6469-6478. doi: 10.1038/s41388-021-02059-y. Epub 2021 Oct 18.
4
Lysosomal degradation of the maternal dorsal determinant Hwa safeguards dorsal body axis formation.
EMBO Rep. 2021 Dec 6;22(12):e53185. doi: 10.15252/embr.202153185. Epub 2021 Oct 15.
5
A MET-PTPRK kinase-phosphatase rheostat controls ZNRF3 and Wnt signaling.
Elife. 2021 Sep 30;10:e70885. doi: 10.7554/eLife.70885.
6
Gene-teratogen interactions influence the penetrance of birth defects by altering Hedgehog signaling strength.
Development. 2021 Oct 1;148(19). doi: 10.1242/dev.199867. Epub 2021 Oct 4.
7
LGR4: Not Just for Wnt Anymore?
Cancer Res. 2021 Sep 1;81(17):4397-4398. doi: 10.1158/0008-5472.CAN-21-2266.
8
RSPO2 inhibits BMP signaling to promote self-renewal in acute myeloid leukemia.
Cell Rep. 2021 Aug 17;36(7):109559. doi: 10.1016/j.celrep.2021.109559.
9
Highly accurate protein structure prediction for the human proteome.
Nature. 2021 Aug;596(7873):590-596. doi: 10.1038/s41586-021-03828-1. Epub 2021 Jul 22.
10
The PROTACtable genome.
Nat Rev Drug Discov. 2021 Oct;20(10):789-797. doi: 10.1038/s41573-021-00245-x. Epub 2021 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验