Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich Alexander University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany.
Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
Nucleic Acids Res. 2022 Jul 22;50(13):7511-7528. doi: 10.1093/nar/gkac560.
Transcription initiation is the first step in gene expression, and is therefore strongly regulated in all domains of life. The RNA polymerase (RNAP) first associates with the initiation factor $\sigma$ to form a holoenzyme, which binds, bends and opens the promoter in a succession of reversible states. These states are critical for transcription regulation, but remain poorly understood. Here, we addressed the mechanism of open complex formation by monitoring its assembly/disassembly kinetics on individual consensus lacUV5 promoters using high-throughput single-molecule magnetic tweezers. We probed the key protein-DNA interactions governing the open-complex formation and dissociation pathway by modulating the dynamics at different concentrations of monovalent salts and varying temperatures. Consistent with ensemble studies, we observed that RNAP-promoter open (RPO) complex is a stable, slowly reversible state that is preceded by a kinetically significant open intermediate (RPI), from which the holoenzyme dissociates. A strong anion concentration and type dependence indicates that the RPO stabilization may involve sequence-independent interactions between the DNA and the holoenzyme, driven by a non-Coulombic effect consistent with the non-template DNA strand interacting with $\sigma$ and the RNAP $\beta$ subunit. The temperature dependence provides the energy scale of open-complex formation and further supports the existence of additional intermediates.
转录起始是基因表达的第一步,因此在所有生命领域都受到强烈调控。RNA 聚合酶(RNAP)首先与起始因子 $\sigma$ 结合形成全酶,全酶通过一系列可逆状态结合、弯曲和打开启动子。这些状态对转录调控至关重要,但仍知之甚少。在这里,我们使用高通量单分子磁镊在单个共识 lacUV5 启动子上监测其组装/拆卸动力学,从而解决了开放复合物形成的机制问题。我们通过在不同浓度的单价盐和不同温度下调节动力学,探测了控制开放复合物形成和解离途径的关键蛋白-DNA 相互作用。与整体研究一致,我们观察到 RNAP-启动子开放(RPO)复合物是一种稳定的、缓慢可逆的状态,其之前是一个动力学上重要的开放中间物(RPI),全酶从该中间物解离。强烈的阴离子浓度和类型依赖性表明,RPO 的稳定可能涉及 DNA 与全酶之间的序列非依赖性相互作用,这种相互作用由非库仑效应驱动,与非模板 DNA 链与 $\sigma$ 和 RNAP $\beta$ 亚基相互作用一致。温度依赖性提供了开放复合物形成的能量尺度,并进一步支持了存在其他中间物的可能性。