文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Analytical methods in studying cell force sensing: principles, current technologies and perspectives.

作者信息

Liu Xiaojun, Yu Lei, Xiao Adam, Sun Wenxu, Wang Han, Wang Xiangxiu, Zhou Yanghao, Li Chao, Li Jiangtao, Wang Yongliang, Wang Guixue

机构信息

College of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266113, China.

Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao 266024, China.

出版信息

Regen Biomater. 2025 Mar 20;12:rbaf007. doi: 10.1093/rb/rbaf007. eCollection 2025.


DOI:10.1093/rb/rbaf007
PMID:40337625
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12057814/
Abstract

Mechanical stimulation plays a crucial role in numerous biological activities, including tissue development, regeneration and remodeling. Understanding how cells respond to their mechanical microenvironment is vital for investigating mechanotransduction with adequate spatial and temporal resolution. Cell force sensing-also known as mechanosensation or mechanotransduction-involves force transmission through the cytoskeleton and mechanochemical signaling. Insights into cell-extracellular matrix interactions and mechanotransduction are particularly relevant for guiding biomaterial design in tissue engineering. To establish a foundation for mechanical biomedicine, this review will provide a comprehensive overview of cell mechanotransduction mechanisms, including the structural components essential for effective mechanical responses, such as cytoskeletal elements, force-sensitive ion channels, membrane receptors and key signaling pathways. It will also discuss the clutch model in force transmission, the role of mechanotransduction in both physiology and pathological contexts, and biomechanics and biomaterial design. Additionally, we outline analytical approaches for characterizing forces at cellular and subcellular levels, discussing the advantages and limitations of each method to aid researchers in selecting appropriate techniques. Finally, we summarize recent advancements in cell force sensing and identify key challenges for future research. Overall, this review should contribute to biomedical engineering by supporting the design of biomaterials that integrate precise mechanical information.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/9e30d5cda07a/rbaf007f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/1e64981a83b8/rbaf007f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/6ab6879fb821/rbaf007f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/61ceb91437ed/rbaf007f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/fa8009d763d5/rbaf007f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/424595501005/rbaf007f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/56714f52f55c/rbaf007f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/d22433e211e0/rbaf007f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/9fcc1af91864/rbaf007f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/bf3f924982ba/rbaf007f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/1705f1c84964/rbaf007f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/587ec4cf86ad/rbaf007f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/e4e56d2a240e/rbaf007f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/642368216863/rbaf007f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/d088ca9e1719/rbaf007f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/9e30d5cda07a/rbaf007f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/1e64981a83b8/rbaf007f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/6ab6879fb821/rbaf007f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/61ceb91437ed/rbaf007f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/fa8009d763d5/rbaf007f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/424595501005/rbaf007f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/56714f52f55c/rbaf007f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/d22433e211e0/rbaf007f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/9fcc1af91864/rbaf007f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/bf3f924982ba/rbaf007f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/1705f1c84964/rbaf007f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/587ec4cf86ad/rbaf007f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/e4e56d2a240e/rbaf007f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/642368216863/rbaf007f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/d088ca9e1719/rbaf007f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40a/12057814/9e30d5cda07a/rbaf007f14.jpg

相似文献

[1]
Analytical methods in studying cell force sensing: principles, current technologies and perspectives.

Regen Biomater. 2025-3-20

[2]
Progress in Integrative Biomaterial Systems to Approach Three-Dimensional Cell Mechanotransduction.

Bioengineering (Basel). 2017-8-24

[3]
Mechanotransduction in tissue engineering: Insights into the interaction of stem cells with biomechanical cues.

Exp Cell Res. 2023-10-15

[4]
Cell response to mechanical microenvironment cues via Rho signaling: From mechanobiology to mechanomedicine.

Acta Biomater. 2023-3-15

[5]
The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells.

Rep Prog Phys. 2019-4-4

[6]
Force-sensing protein expression in response to cardiovascular mechanotransduction.

EBioMedicine. 2024-12

[7]
Feeling the force from within - new tools and insights into nuclear mechanotransduction.

J Cell Sci. 2025-3-1

[8]
Convergence of Calcium Channel Regulation and Mechanotransduction in Skeletal Regenerative Biomaterial Design.

Adv Healthc Mater. 2023-10

[9]
Review of Machine Learning Techniques in Soft Tissue Biomechanics and Biomaterials.

Cardiovasc Eng Technol. 2024-10

[10]
Molecular Tension Probes for Imaging Forces at the Cell Surface.

Acc Chem Res. 2017-11-21

本文引用的文献

[1]
Real-time viscoelastic deformability cytometry: High-throughput mechanical phenotyping of liquid and solid biopsies.

Sci Adv. 2024-12-6

[2]
Measuring Integrin Force Loading Rates Using a Two-Step DNA Tension Sensor.

J Am Chem Soc. 2024-8-21

[3]
Super-resolution imaging of T lymphocyte activation reveals chromatin decondensation and disrupted nuclear envelope.

Commun Biol. 2024-6-10

[4]
Regulation of mitochondrial network architecture and function in mesenchymal stem cells by micropatterned surfaces.

Regen Biomater. 2024-5-7

[5]
DNA-based ForceChrono probes for deciphering single-molecule force dynamics in living cells.

Cell. 2024-6-20

[6]
Characterizing intracellular mechanics via optical tweezers-based microrheology.

Curr Opin Cell Biol. 2024-6

[7]
Nesprin proteins: bridging nuclear envelope dynamics to muscular dysfunction.

Cell Commun Signal. 2024-4-2

[8]
Determination of single-molecule loading rate during mechanotransduction in cell adhesion.

Science. 2024-3-22

[9]
Cancer cell response to extrinsic and intrinsic mechanical cue: opportunities for tumor apoptosis strategies.

Regen Biomater. 2024-2-20

[10]
Anisotropic microtopography surface of chitosan scaffold regulating skin precursor-derived Schwann cells towards repair phenotype promotes neural regeneration.

Regen Biomater. 2024-1-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索