Department of ECE, National Institute of Technology, Patna, Bihar, India.
Proc Inst Mech Eng H. 2022 Aug;236(8):1216-1231. doi: 10.1177/09544119221105690. Epub 2022 Jul 12.
Magnetic Resonance Imaging (MRI) is an essential clinical tool for detecting the abnormalities such as tumors and clots in the human brain. The brain MR images are contaminated by artifacts and noise that follow Rician distribution during the acquisition process. It causes the loss of fine details information, distortion, and a blurred vision of the image. A reshaped Gabor filter-based denoising technique is proposed to overcome these issues. To develop the reshaped Gabor filter, the range of reshaping parameters of the filter is initially obtained by a random search method. Further, to evaluate the better performance of the proposed filter, a manual search is used to find the optimal parametric values and tested on T1, T2, and PD weighted MR data sets one by one. Also, the proposed technique is compared with the existing state of the art filtering methods such as Wiener, Median, Partial differential equation (PDE), Anisotropic diffusion filter (ADF), Non-local means filter (NLM), Modified complex diffusion filter (MCD), Multichannel residual learning of CNN (MRL), Maximum a posteriori (MAP), Adaptive non-local means algorithm (ADNLM), and Advance NLM filtering with non-sub sampled (AVNLMNS) on the basic reference and no reference parameter. The parameters such as mean square error (MSE), peak signal to noise ratio (PSNR), structural similarity index metric (SSIM), perception-based image quality evaluator (PIQE), and blind/referenceless image spatial quality evaluator (BRISQE) are evaluated on T1, T2, and PD weighted MR images with different noise variances such as 1%, 3%, 5%, 7%, and 9%. The proposed method may be used as a better denoising scheme for Rician distributed noise, edge preservation, fine details restoration, and enhancement of abnormalities.
磁共振成像(MRI)是检测人脑肿瘤和血栓等异常的重要临床工具。在采集过程中,大脑磁共振图像会受到随瑞利分布的伪影和噪声的污染。这会导致图像细节信息的丢失、失真和模糊。本文提出了一种基于整形伽柏滤波器的去噪技术来克服这些问题。为了开发整形伽柏滤波器,首先通过随机搜索方法获得滤波器的整形参数范围。此外,为了评估所提出的滤波器的更好性能,使用手动搜索来找到最优参数值,并逐个测试 T1、T2 和 PD 加权磁共振数据集。此外,将所提出的技术与现有的基于维纳滤波、中值滤波、偏微分方程(PDE)滤波、各向异性扩散滤波(ADF)滤波、非局部均值滤波(NLM)滤波、改进复扩散滤波(MCD)滤波、多通道残差学习的卷积神经网络(MRL)滤波、最大后验概率(MAP)滤波、自适应非局部均值算法(ADNLM)滤波和带非下采样的先进非局部均值滤波(AVNLMNS)滤波等现有的最先进滤波方法进行比较。在 T1、T2 和 PD 加权磁共振图像上,基于基本参考和无参考参数,使用均方误差(MSE)、峰值信噪比(PSNR)、结构相似性指数度量(SSIM)、基于感知的图像质量评估器(PIQE)和无参考盲图像空间质量评估器(BRISQE)等参数对不同噪声方差(如 1%、3%、5%、7%和 9%)的图像进行评估。该方法可作为一种更好的瑞利分布噪声去噪方案,用于保留边缘、恢复细节和增强异常。